
1

Blockchain Resource Pricing

Vitalik Buterin

August 7, 2018

August 7, 2018

Abstract

[this will be reworked at the end]
One of the most challenging issues in blockchain protocol design is how

to limit and price the submission of transactions that get included into the

chain. Every transaction confers some private benefit to its sender, but
transactions also incur social costs to the network as a whole, as every node
in the network must process every transaction. This results in a classic
example of the “tragedy of the commons” problem. In such cases,

economic theory generally dictates pricing the resources in question, and
setting the price to equal the social cost that the act of consuming each
resource imposes on the network. However, the heterogenous nature of
the computation, bandwidth and storage resources involved, the large

portion of the social cost that exists in the form of intangible and difficult-
to-value harms such as centralization risk, and the need to create an
automated algorithm that can set prices in a wide range of future scenarios
without human intervention all make it very difficult to set restrictions that

are optimal. In this paper, we discuss tradeoffs between different
approaches and strategies that can improve on the status quo on the
margin.

1 Introduction and Model

A blockchain is a decentralized network consisting of a large number of

computers that must all process transactions that transaction senders upload to

the chain. Hence, a transaction that is published to a blockchain confers some

private benefit to its sender, but also confers an external social cost to the

network’s participants. In order to account for this social cost, and prevent abuse

Commented [b1]: Edit for clarity:
“that must, individually, process all transactions that
transaction senders upload”

Commented [b2]: Grammar edit:
“…account for this social cost, and to prevent abuse…”

OR

“…account for this social cost and prevent abuse…”

2

of the blockchain as a common pool resource, some economic mechanism for

restricting what transactions get included is required. However, there are many

types of economic mechanisms that can be used to solve resource pricing

problems of this type, and understanding which one is optimal requires more

deeply understanding the nature and types of social costs in question.

The social costs can be broken down in two ways. First, one can categorize by

fundamental type of resource expenditure:

Bandwidth cost: the cost of all nodes downloading each submitted

transaction, bundling it into a block, and then rebroadcasting the

transaction as part of some block.

Computational cost: the cost of every node verifying each transaction.

History storage cost: the cost of storing the transaction for all nodes that

store the blockchain’s history, for the time for which the history is stored

(possibly infinity).

State storage cost: the marginal cost of the impact of the transaction on

the size of the state (eg. contract code, account balances) that every node

must store to be able to process further transactions.

Note that the first two costs are costs that are paid by the nodes that are online

at the exact time when the transaction is included, the third cost is paid by nodes

that are online at that time or in the near future, but the fourth cost must be paid

by all nodes forever, unless a scheme is introduced that makes all state entries

temporary.

Second, one can categorize by different types of first and second-order effects.

We can understand these effects as follows. We can consider a blockchain to be

a network of n computers, C1...Cn, where any transaction that gets included in

the blockchain must be processed by all of the nodes that are still online in the

network. Some transactions are more complex than others; each transaction has

some “weight” W that represents the quantity of resources needed to process it.

Each user Ui has some direct resource cost function Ri(W) representing the cost

to the user of processing a given amount of weight. This cost can include

electricity and bandwidth costs, marginal disk wear and tear, inconvenience from

a user’s other applications running more slowly, reduced battery life, and so on.

Commented [b3]: Grammar edit:
“…problems of this type and understanding which one
is optimal…”

3

For sufficiently high w, at some point the costs become unacceptable to any

given user, at which point the user will drop offline (we assume Ri(W) is flat above

this point). Let NodeCount(W) be the number of users still online at weight W.

Note that different users could drop offline at different points for either of two

reasons: (i) some users have a lower resource cost than others, and (ii) some

users value being connected to the blockchain more than others.

There is some utility function D(k) reflecting the social value of the level of

decentralization achieved by having the number of online nodes, which can be

translated into a function D(W) of the total transaction load. There may also be

some cost function A(W) that reflects the increased attackability of the network

as more transactions get included. We can summarize all of these costs as a

combined cost function C(W) = Pi Ri(W) + (A(W) − A(0)) − (D(W) − D(0)).

The above suffices as a model of a blockchain for the purpose of this paper; we

do not need to care about details about proof of work, proof of stake, block

structure, etc, except insofar as the details of those consensus algorithms and

blockchain design patterns affect NodeCount and A, and therefore C.

2 Prior Work

In Bitcoin and Ethereum, resources are priced using a simple “cap-and-trade”

scheme. A metric is defined for the quantity of resources (called “weight” or

“gas”) that a transaction consumes, and there is a protocol-defined maximum

total quantity of resources that the transactions contained in a block will

consume. Validators have free rein to select transactions as long as the total

weight of the block is below that limit. An equilibrium is established where users

attach fees to their transactions which go to the validator that includes the

transaction in a block, and validators select the transactions paying the highest

fee per unit weight. In Bitcoin, for example, the weight limit is a static 4 ∗ 106,

and weight is defined as follows [1]:

 weight(block) = 4 ∗ len(block.nonsignature data) + len(block.signature data) (1)

Commented [b4]: This seems like an awkward word
to use.

Suggestion:
“attack surface”

OR

“assailability”

4

Where len(x) returns the number of bytes in x. For technical reasons that have to

do with attempting to price in history and state storage costs, the bytes in

signatures of transactions are priced more cheaply than the nonsignature data in

transactions. In Ethereum, there is a measure called “gas” which incorporates

the size of the block as well as the computational cost of verifying transactions

and executing smart contract code. For simplicity of exposition, this can be

approximated as:

weight(block) = 68∗len(block) + 3∗numcomputationalstepsinblock (2)

The gas function is in reality much more complex, but similar in spirit. There is a

per-block gas limit, which validators can vote on (when creating a block, a miner

can “upvote” or “downvote” the gas limit by a maximum of ∼0.1%), and at the

time of this writing most validators are voting for a gas limit of ∼8 million.

A major problem with this approach is that a priori it has been difficult to

determine a reasonable weight limit, and the question has often been a source

of controversy [?]. The purpose of this paper will be to try to go beyond the one-

dimensional design space of “there must be some limit, what should it be?” and

explore a much larger space of policies that attempt to address transaction

resource consumption externalities, and try to develop policies that are both

closer to optimal at the present time, and more robust to changes in economic

circumstances in the long-term future, reducing the need for “extra-protocol

interventions” such as hard forks.

3 Pricing Resources under Uncertainty

Blockchain resource pricing has many parallels to regulatory responses to

environmental pollution. Particularly, although the validator of a block is

compensated for publishing the transactions, the cost of that block being

published is borne by all full nodes, much like how pollution produced by one

factory must be suffered by everyone living in the village (if not an even larger

area). This cost being borne by all full nodes is the negative externality that we

wish to limit. Both blockchains and environmental regulators use economic

5

interventions to limit activities with negative externalities, where the negative

externalities have both measurable components as well as components with high

Knightian uncertainty (i.e., “unknown unknowns”) [2]. Many results from

environmental economics [3] are directly applicable to blockchains.

Weitzman’s 1974 paper “Prices vs Quantities” [4], outlines the tradeoffs between

regulation by price (e.g., carbon taxes) versus regulation by quantity

(e.g., issuing a fixed number of permits and letting them trade on the market).

One important insight that Weitzman cites is that if the policymaker has perfect

information about the social cost function and the demand curve for consuming

the resource (a.k.a. the “benefit function”), the two approaches are equivalent:

for any desired price, one can choose an equivalent quantity-based policy by

issuing exactly the number of permits equal to the equilibrium quantity that

would be purchased at that price. However, when there is uncertainty about the

position and shape of the cost-benefit curves, the two approaches have

substantial differences.

Consider a world where the marginal social cost (negative externalities) of

consuming a resource is fixed, but the marginal benefit function is rapidly

decreasing. If a policymaker sets a quantity limit that is too low, then the quantity

limit will intersect the marginal benefit curve at a point where the cost and

benefit are much higher than the social cost, and consumers suffer very large

opportunity costs from nonconsumption. But if a policymaker instead sets a

price, then the damage from a miscalculation is much lower.

If on the other hand, the private cost of abstaining is fixed yet the marginal social

cost of consumption increases rapidly, then setting a price is riskier. For example,

consider a scenario where the social cost of consuming <

1,000 resource units is acceptable, but going above 1,000 risks disastrous

consequences (e.g., some “tipping point” theories of global warming [5]). The

marginal social cost of consuming an additional resource unit in a world where

people are already consuming 1,050 resource units will be much higher than the

marginal social cost in a world where people are merely consuming 900. In this

case, if a policymaker anticipates a consumption of 900, and targets a tax to equal

the marginal social cost at the 900 level, then the policy will be massively

underpricing the additional social harm caused by additional resource

6

consumption. On the other hand, a policymaker that simply issues 900 permits

and allows them to trade on the market would see the risk mitigated.

 Quantity Quantity

Figures (a)–(b) show the first scenario in which it’s better to set a price.

Figures (c)–(d) show the second scenario where it’s better to set a quantity.

Taken together, if the consumer’s marginal private costs increase faster with

quantity than the marginal social costs, that is when

private benefit00(quantity)

 > 1 , (3)

00

social cost (quantity)

then seting prices is better, and in other cases setting quantities is better. Note

that we need to use the second derivative because we are specifically talking

about the the rate of change in marginal costs.

The argument above applies only if costs and benefits are independently

distributed. If changes in the cost and benefit curves are correlated, then an

Cost

Quantity

est. private
benefit

private
benefit

est. social
cost

Optimum

Cost

Quantity

private
benefit

set quantity

set price

equilibrium
with

set quantity

equilibrium
with

set price

est. social
cost

Cost est. private
benefit

private
benefit

est. social
cost Optimum

equilibrium
with

set price

equilibrium
with

set quantity

Cost est. private
benefit

private
benefit

est. social
cost

Commented [b5]: Spelling edit:
“setting”

7

additional term must be added into the choice rule, increasing the relative

attractiveness of limiting quantity. To see this intuitively, consider the extreme

case where uncertainty in cost and benefit is perfectly correlated; in such a

scenario, if original estimates of cost and benefit prove incorrect, both curves will

move up or down in lockstep, and so the new equilibrium will be directly above

or below the original estimated one; hence, a quantity-targeting policy would be

perfectly correct and a price-targeting policy would be pessimal. This analysis

covers only two possible policies, but a much greater space of options is

available. One can think of policy space as the space of possible supply curves for

a given resource, where a pricing policy represents a horizontal supply curve and

a cap-and-trade scheme represents a vertical supply curve. Various forms of

diagonal supply curves are also possible, and in most cases some form of not

strictly horizontal or vertical supply curve is optimal.

Should blockchains have a block size limit, or should they not have a limit but

instead charge a fixed fee per resource unit consumed, or would some

intermediate policy, one which charges a fee as a function F(w) of the weight

included in a block and where F 0(w) is increasing and possibly reaches an

asymptote, be optimal? To estimate optimal policy under the prices vs.

quantities framework, we start off by attempting to estimate the social cost

function.

A study from Cornell [6] provided an estimate of the node count as a response

to the weight load of the blockchain. The study was conducted at a time when

Bitcoin’s weight formula was simply one weight unit per byte, with a weight limit

of 106. The study found that 90% of nodes would remain online at W = 4 ∗ 106,

and 50% of nodes would stay online at W = 3.8 ∗ 107.

Commented [b6]: Grammar edit:
“…possible and, in most cases, some form of…”

8

As a first approximation to quantifying the value to decentralization from having

more nodes, we can use a logarithmic utility: D(W) = log(NodeCount(W)). What we

discover is that NodeCount(W) is roughly proportional to W1 , which in turn implies

that D(W) = −log(W). This in turn implies D0(W) = W
1 : the marginal social cost

function is decreasing.

However, this model fails to take into account other kinds of harms that come as

a result of large blocks taking a longer time to propagate. A study by Decker and

Wattenhofer in 2013 found that the time that it takes for a block to propagate

through the network is roughly linear in the block’s size. Zohar and Sompolinsky

[7] show that with a network delay t and block time T, the rate of honest block

creation slows from to T
1

+t, reducing resistance to “51% attacks” from to q

where 1−
q

q
∗

T
1 = T

1
+t, i.e. q = 2T

T
+t. It seems reasonable to define a cost function

A(x) = MinAttack , where MinAttack(x) is the minimum size of an
attack that can succeed; since MinAttack(x) = 2T

T
+t, this implies that A(x) = 2 + Tt .

t is a function of W; if t is linear in W, then that implies that A(W) = 2 + k ∗ W for

some constant k, so the social cost function is linear.

In the case of Ethereum, we can try to look at the correlation between block gas

usage and the “uncle rate”, a measure of the percentage of blocks produced that

do not make it into the canonical chain and hence that do not contribute to chain

security.

9

Relationship between block gas limit and uncle rate

The nonlinearity in this figure is in part an artefact of the data; during the period

in late 2017, the composition of transactions changed away from smart contract

use cases toward ERC20 token transfers, which affect uncle rate more than smart

contract uses as their gas consumption is largely from bandwidth and

computation costs and not code and storage. The dots at the top left are the

2016 DoS attack. Here’s the same graph rescaled with the dots from late 2017

and the 2016 DoS attacks removed:

10

Relationship between block gas limit and uncle rate, Dec 2016 to Sep 2017

However, there are superlinear costs at play as well. Clients need to process both

the main chain and the blocks that do not become part of the canonical chain;

hence, if a level of canonical-chain throughput x causes an uncle rate p, then the

actual level of computational burden is 1−
x
p, with a denominator that keeps

decreasing toward zero as the canonical-chain throughput increases.

Additionally, with high uncle rates selfish mining attacks become much easier [8],

and the reduction in node count itself leads to pooling, which makes selfish

mining more likely. There is thus a qualitative sense in which the social cost of

increasing W to whe point where t = T is more than ten times that of setting W

so that t = T ∗ 0.1.

Even if the cost function is superlinear at the extremes, however, it appears to

be linear at the lower side of the distribution, and the arguments from the Cornell

study suggest it may even be sublinear. If the block size increases from 10kb to

1000kb, a significant social cost is incurred because IoT devices, smartphones,

Raspberry Pis, etc have a much harder time staying connected, but an increase

from 1000kb to 1990k does not have such a high cost, because the range of use

cases that become unusable within that interval is much lower. Hence, it seems

plausible that the social cost curve is U-shaped:

Rendering of a possible total social cost curve for blockchains accepting transactions

Commented [b7]: Grammar Edit:
“…to the point…”

11

3.1 Estimating the Private Benefit Curve

The private benefit curve, the demand for sending transactions, is much harder

to estimate. We will try to make some estimates of a single variable, the elasticity

of demand (ie. by what percent demand increases with a 1% fall in price), by

looking at some “natural experiments” in the Bitcoin and Ethereum blockchains.

One type of natural experiment is to look at day-by-day transaction fee changes

during a situation where the capacity of a blockchain suddenly changes due to

some extrinsic factor; Ethereum gas limit changes, and Bitcoin block time

instability due to interaction effects between Bitcoin and Bitcoin Cash mining,

are the easiest two cases. Charts show a correlation between reduced Bitcoin

blockchain capacity due to temporary block time increases and spikes in

transaction fee levels:

Bitcoin blocks per day

Bitcoin transaction fees

A more thorough analysis of similar data [9] gives elasticities of 0.4-0.7 for

Bitcoin, and 1-2 for Ethereum.

Additionally, it is important to note that this only measures the short-term

demand curve looking at actions taken over a few days to months and does not

take into account longer-term adjustments that could happen in the market only

12

after a couple of years; in the real world, for example, it is an established fact

that long-run demand elasticity of gasoline is higher than short-run elasticity

[10]; and this is likely true with Bitcoin transaction fees and Ethereum gas as well.

So far, this model suggests a benefit curve with slope between -0.4 and -2 (if

rescaled so that the current supply/demand intersection is at (1,1)), and a social
cost curve with (rescaled) slope that is difficult to determine, but at current

margins in various blockchains is likely to be low and may be positive or negative.

This suggests that a flat per-weight-unit in-protocol transaction fee, coupled with
a hard limit at the point where the marginal social cost starts rapidly increasing,

is superior to a pure weight limit-based regime.

——————

4 Cryptocurrency Prices

In the short run, one can assume that price movements, changes in the social

cost functions and changes in usage are all random and independent. In the long
run, however, the three factors are highly intertwined. Specifically, (i) the price of

a cryptocurrency; (ii) the social cost curve [as the number of beneficiaries of the

system increases, and the number of full nodes also increases]; and (iii) the

benefit curve [as there are more users sending transactions] are all highly

correlated with a single variable, which we might call “adoption”.

We can make a model as follows. Suppose that a k-factor increase in adoption

leads to:

• A k-factor increase in the price.

• A k-factor increase in the number of transaction users, ie. a k-factor

horizontal stretch of the demand curve.

• A k-factor increase in the number of users and the number of full nodes.

Let us assume for simplicity that the demand elasticity is 1, and that the

decentralization utility of N full nodes is D(N) = log(N), so a k-factor increase in

the number of full nodes simply adds utility log(k); the k-factor increase in the

number of users scales up the social cost curve by a factor of k, and the private

13

benefit curve scales by a factor of k. This leads to the result that, denominated in

the cryptocurrency in question, adoption leaves the private benefit and social

cost curves unchanged, and so there is also no correlation (!!). 1

Reality is of course more complicated than this simple model, but the model does

suffice to show that, because of the lucky coincidence of being forced to

denominate fees in a cryptocurrency whose price is itself proportional to

adoption, there is at least no very strong first-order reason to expect positive

correlation between the nominal benefit and cost curves. Hence, the arguments

for using fixed fees in addition to gas limits still stand.

Arguably one of the key reasons behind the un-intuitiveness of fixed fees is that

for most of the history of blockchain protocols, blockchains operated in a “non-

full blocks” mode, where there was always space in a block to include more

transactions. The fee required to be paid was only a minimal value, set as a

software default. When a cryptocurrency experiences a large price rise, this

causes fees experienced by users to rise greatly, until eventually the defaults are

manually adjusted downwards [11–13]. Hence, transaction fees were kept

artificially stable by what are essentially political constraints, whereas no such

stabilizing effect existed for cryptocurrency prices.

Gas prices in gwei. The two marked sudden drops are coordinated attempts by miners and developers to reduce minimum

accepted gasprices, first from 50 gwei to 20 gwei, then from 20 gwei to 4 gwei. Similar coordinated fee decreases have
taken place in Bitcoin [14].

However, Bitcoin has recently entered the “full blocks” regime, where

transactions are in permanent competition with each other to get included, and

Ethereum has entered this regime during high-intensity token sales [15]. In this

mode, fees become more volatile, and rises in adoption contribute to even more

1 An astute reader might ask whether or not there is empirical data to support this

14

volatility. In Bitcoin, this has led to a ∼ 10x increase in fees in less than a year; in

Ethereum, fees increase by a similar factor during token sales. Even on average,

in the last year transaction fees have become considerably

claim; unfortunately, far less than a single cryptocurrency “business cycle” (in the financial market

bubble sense) has passed since blockchains started to typically have “full blocks”, so there is far

too little empirical data to make an assessment.

more volatile than the ETH price:

ETH price (lower) and average gasprice in USD (higher), Oct 2017 (post-Byzantium-hardfork) to July

2018. The mean absolute daily percentage change is 4.2% for the ETH price in the shown time period, and 16.0% for the
USD-denominated average gasprice, and is standard deviation is used the average gasprice is ≈ 25 times more volatile

due to spikes.
2

In the absence of political pressure on miners to make further gas limit increases,

we see no reason for this state of affairs not to continue; and if political pressure

can be used to increase gas limits when needed, then the same processes could

be used to adjust a fixed dee.

5 Transaction Fees and Auction Theory

So far, we have discussed resource pricing policies in the abstract, but we have

not discussed the specific mechanism that is used to implement them. The field

of mechanism design has made many discoveries about what types of auctions

perform better under what circumstances, and much of it is relevant to

transaction fee markets.

Commented [b8]: Grammar Edit (reasoning - avoid
split infinitives):
“…this state of affairs to not continue…”

15

In nearly all blockchains so far, transaction fee markets work as follows.

Transaction senders are free to specify any fee they want as part of their

transaction when they broadcast it. Transactions are included into blocks by

block proposers, which we can assume here are randomly selected for each

block. Block proposers are constrained by the weight limit, which specifies how

much they can include in each block. Naturally, block proposers will

2Source: http://etherscan.io/charts; spreadsheet with data and calculations at

http://vitalik.ca/files/FeesAndETH.ods

include the transactions that pay them the most, and as part of the protocol they

collect the fees that are specified in the transaction.

In mechanism design speak, this is a first price auction, characterized by the key

property that “you pay what you specify, and only if you win”. This kind of auction

is generally considered to be deeply suboptimal, because it requires complex and

inefficient strategies on the part of the buyers (here, transaction senders). For

example, suppose that a given buyer values their transaction getting included at

$1. How much should they bid? The answer is certainly less than $1; but how

much less? If everyone else is bidding $0.05, then clearly $0.06 will suffice. If

everyone else is bidding fees that have some complex distribution with mean

$0.10 and standard deviation $0.05, with a fat tail on the right side, then the

calculation becomes extremely complicated, and very often there are no efficient

equilibria. [16] 2

The typical alternative is for selling many items a kth price auction: everyone pays

the same as the lowest fee that gets included. 3 This mechanism allows for a very

simple, and optimal, buyer-side strategy: if a transaction sender values getting

their transaction included at $x, they bid $x. If the minimum bid in a block ends

up being less than $x, they get in (and pay less than $x, so they are happy that

they got in), but their bid being higher does not marginally affect the amount

2 The inefficiency of first price auctions in existing blockchain networks has already shown

itself with many cases of users and businesses overpaying for fees [17], and self-help articles

directing users to tools that facilitate “fee estimation” [18].
3 Technically, everyone should pay the same as the highest fee that did not get included, but this

is even harder to implement and enforce, and for a sufficiently large number of items the

difference between the two is very minor.

16

they pay. If the minimum bid in a block ends up being more than $x, the

transaction sender does not get included, and is happy they were not included,

because were they included they would have had to pay a fee higher than they

were willing to pay.

However, kth price auctions have a different kind of serious flaw: they are not

incentive-compatible for the auctioneer (ie. the block proposer). First of all, if a

block proposer is presented with a suitably steep demand curve, it is in their

interest to fill the block with at least some high-fee-paying “dummy

transactions”, displacing low-fee-paying transactions and sacrificing the revenue

from these transactions but at the same time dramatically raising the fee that

everyone else has to pay.

A more serious issue is collusion between the proposer and some transaction

senders. A proposer can potentially collude with low-fee tansaction senders (eg.

suppose there is a single entity, like an exchange or mining pool, that sends such

transactions and can b easily negotiated with) that are sending transactions with

some fee flow. The proposer can ask them to instead send their transactions with

fee fhigh, and refund them fhigh − flow2 . The proposer’s revenue is now even higher:

the proposer benefits from the increased height of the “rectangle” of fee

revenue that they would get with the “dummy transaction” strategy above, but

they would also get a portion of the revenue from transactions that they would

otherwise have sacrificed. 4

Hence, both first-price and second-price auctions are unsatisfactory. However,

note that these issues are exclusively properties of auctions, and not properties

of a fixed-price sale. If being included in the blockchain simply requires paying

4 For a more detailed treatment of similar issues, see [19] and [20].

Commented [b9]: Spelling edit:
“…transaction senders...”

Commented [b10]: Spelling edit:
“…can be easily negotiated with…”

17

some minFee, then transaction senders have a simple strategy that they can use

to set the fee on their transaction. Let v be a user’s private valuation for a

transaction getting included in the next block. The user would check if v > minFee;

if it is, they would bid minFee+ (to provide a slight incentive for the block

producer to include the transaction); if v < minFee they would not send the

transaction. This is a very simple strategy that does not require knowledge of

others’ valuations, and is optimal for the transaction sender.

6 Improving the Second Best

So far the evidence suggests that hard quantity limits are overused and price

floors are underused. But how do we even start trying to set the price floor?

What we will show in this section is that in cases where a price floor is better, it

is possible to improve upon a hard quantity limit in a way that specifically

alleviates the problem of deadweight losses from short-term transaction fee

volatility, without having to set a specific price as a protocol parameter. Clearly,

large deadweight losses from short-term transaction fee volatility exist:

Ethereum transaction fees are sometimes 2 gwei and sometimes 100 gwei, but

it is definitely not true that the marginal social cost of a block containing 8000001

gas rather than 8000000 is 50 times higher in the case where the latter is true.

Suppose that we start with an existing policy which sets a weight limit wmax. We

normalize weight units so that the optimal weight limit and transaction fee level

are both 1. For simplicity, we assume linearity of the marginal social cost and

demand function: C0(1+x) = 1+C00 ∗x and D0(1+x) = 1−D00 ∗x, where D00 can also

be viewed as the demand elasticity. Suppose that wmax is set incorrectly, to 1 + r
for some r (in reality, wmax will of course inevitably be set incorrectly, though we

likely won’t know the value of r or even if it is positive or negative). We can draw

a deadweight loss triangle to calculate the size of the economic inefficiency:

Commented [b11]: Grammar edit:
“…valuations and is optimal…”

18

The area of the triangle, representing the total economic losses from an

excessive (or if r is negative, insufficient) number of transactions being included,

is); for simplicity we’ll call this value A. Now suppose that, like
in reality, demand is volatile, which we will approximate with a simple model

where D0(1 + x) half the time equals to 1 + D00 ∗ x + δ and the other half of the

time equals to 1 + D00 ∗ x − δ. In the −δ period, the height of the triangle increases

from r ∗ (C00 + D00) to r ∗ (C00 + D00) + δ, or a

Commented [b12]: Try to reword this as it feels
awkward. I have no suggestion.

19

By similar triangle laws the width increases by the same proportion, so the area

increases from A to A . In the +δ period, the area decreases to

A . The average of (1+x)2 +(1−x)2 is 1+x2,

so the average of the two areas is A

Now, suppose we use a different algorithm. The protocol targets a long run

average weight of 1 + r, but it does so by setting a price for transactions that

adjusts slowly over time. The price that it would target is in this case is 1−D00 ∗r.

Now, let us consider the average deadweight loss. Moving demand up by δ will

move the triangle to the right by Dδ
00 , which increases its height by D .

The original height was r ∗ (C00 + D00), so the height increases by a ratio
of 1 +

r

∗(C +D). By similar triangle laws the width increases by the same

proportion, and in the −δ case we flip the sign in a similar way; the end result is

that the average area is A

It should be clear that the average area in the second case is smaller (ie. less
δ∗C00

inefficiency) than the average area in the first case if and only if r

r∗(C00

δ+D00), or alternatively δD∗C
0000 00 < D00, and in < δ, or even more

simply C

20

other cases the average area in the second case is larger. What this thus proves

is a sort of marginal analogue to Weitzman’s 1974 result [4], where in the exact

same case where choosing a price is better than choosing a quantity, a quantity

limit can be improved on the margin by replacing it with a “flexible limit” that is

really just a price level that adjusts over the medium term to target the quantity

limit.

We now propose an alternate resource pricing/limit rule that we believe

provides superior properties to a hard limit wmax:

• Define a constantly adjusting in-protocol parameter minFee. Transaction

senders are charged a fee of minFee per weight unit; this fee is either

burned or redistributed to consensus participants other than the proposer

of the block that included this transaction; this prevents profitable side-

dealing arrangements where the transaction senders are refunded this fee.

• Define a new weight limit, wnewmax = 2 ∗ wmax.

• Define an adjustment speed parameter adjSpeed, with 0 < adjSpeed <

2.

• In any particular block, let wprev be the amount of weight consumed in the

previous block, and minFeeprev be the previous block’s minFee value. See

minFee for this block to equal minFeeprev ∗
(1 + (

w newmax
wprev −

adjSpeed.

This rule is likely to outperform simple limits in terms of allocative efficiency for

the reasons cited above, and also (except during sudden and extreme spikes)

eliminates the issues with first and second price auctions described above. 5

As a philosophical note, complex gas and fee policies are often criticized as being

a form of economic “central planning”, which is frowned upon because planners

may not have aligned incentives and have less information than participants

5 In the specific case of storage pricing, a quirk in Ethereum gas pricing rules that allows

storage to be (mostly) paid for before it is actually used allows for second-layer markets like
GasToken [21] where gas can be burned to generate “congealed storage use privileges”, which
can then be used later. The possibility of doing this unintentionally creates efficiency gains similar

in type, though smaller in size, than those described here.

Commented [b13]: Grammar edit:
“…above, and it also…”

21

closer to the day-to-day economic activity. That said, note that any transaction

pricing policy, whether fee-based or limit-based, necessarily has centrally

planned parameters. I would argue that the correct way to apply the Hayekian

anti-central-planning intuition is to treat it as saying that central plans are less

bad if those plans have lower Kolmogorov complexity, a simple strict weight limit

being an ideal example.

Plans with low Kolmogorov complexity are ideal because they have fewer moving

parts that can fail, are less likely to overfit, and because there is so little entropy

in the specification and parametrization of the plan, it is very difficult to encode

attempts to favor or disfavor specific users or applications; this helps foster a

shared impression of fairness. For this reason, we will argue for policies that are

as simple as possible while still being substantial and needed improvements on

the status quo.

7 Heterogenous Resources in Computation and Bandwidth

The above weight limit analyses assume that a single scalar can sufficiently

quantify the burden a transaction imposes upon the network. In reality,

however, a transaction consumes several heterogeneous resources: calculation

and state I/O (here grouped into “computation”), bandwidth, and state storage.

Each of these have different properties, and an optimal pricing scheme should

likely take these differences into account.

We will start off by looking at computation and bandwidth. Computation and

bandwidth both contribute to the computational load of a node, and both

contribute to “uncle rate”; hence, both seem to be subject to the same

mechanics of linear or sublinear social cost at lower weights and superlinear

social cost at higher weights. If the factors creating the superlinear social costs

are independent, it may be prudent to have a separate gas limit for computation

and block size limit for bandwidth; however, because much of the superlinearity

comes from the uncle rate itself, and the impacts of computation and bandwidth

on uncle rate seem to be additive, it seems more likely that a single combined

limit actually is optimal.

One question worth asking is: can we somehow measure in-protocol the social

cost of computation and bandwidth, or at least a more limited statistic like the

maximum level of computation and bandwidth that the median client can safely

22

handle? Proof of work mining difficulty does very directly give an exchange rate

between a blockchain’s native cryptocurrency and at least one kind of

computation: if a blockchain’s block reward is R, its mining algorithm is H, and its

difficulty is D, then in general we should expect cost(H) ≈ DR.

However, this approach is extremely fragile against advances in technology such

as specialized hardware. [22] and [23] suggest a roughly 1000-5000x difference

between the mining efficiency of ASIC and GPU hardware for mining Bitcoin at

present, and a further disparity exists between GPUs and CPUs. This suggests

that, were mining difficulty used as a proxy to determine the computational

capacity of clients in order to determine Bitcoin block size limits, a block size limit

initially targeted to 1 MB would by now have grown to be many gigabytes. A

block weight limit targeted to an optimal value based on the assumption of a

10000x disparity between ASICs and CPUs today may in contrast lead to the limit

becoming 100-10000x below optimal if the advantage of specialization decreases

in the future, due to either more use of adaptive semi-specialized hardware such

as FPGAs in consumer hardware or specialized hardware being unable to squeeze

out larger efficiencies once even general-purpose hardware starts to come close

to thermodynamic limits.

The proof-of-work-based cost metric has an additional flaw: cost(H) is only the

cost of calculating a computation once. The actual social cost also depends

heavily on the number of nodes in the network, as each node will need to run

the computation, and this is also extremely difficult to measure. This issue can

be circumvented by changing the mechanism, instead requiring miners to

compute a non-outsourceable proof of work [24] and setting a computation gas

limit based on the highest amount of work submitted within some time period,

but this does not get around the specialized hardware issues. One can try to

incentivize transaction submitters to submit these proofs, but that carries the

high risk of incentivizing users to use wallets with centralized custody of private

keys.

One can similarly attempt to measure bandwidth with proofs of bandwidth [25],

but this also carries a high risk of incentivizing concentration. Fundamentally,

incentive-compatibly measuring the level of capability of a node requires

incentivizing them to reveal capability, with higher rewards for higher levels of

23

revealed capability, and this inherently incentivizes specialized and concentrated

hardware-driven centralization.

8 Pricing State Storage

Pricing state storage is a fundamentally different kind of burden from

computation, bandwidth and state IO (treated above as being simply another

kind of computation) for one simple reason: whereas those costs are one-time

burdens on validators and nodes that are online at that particular time, state

space must be stored by, and thus burdens, all full nodes, forever.

In Bitcoin, there is no explicit fee for filling storage; transactions are simply

charged per byte, and filling storage is charged for indirectly because filling a new

storage slot (consuming an average 61 bytes [26]) requires adding about

34 bytes [27] to a transaction (at least for “regular” outputs; non-standard

outputs can be made for as little as 9 bytes [28] [29]), so there is a maximum

amount by which one can increase the size of the UTXO set within a single block.

The recent Segregated Witness fork includes a modification where signature data
is charged as 1 weight unit per byte and nonsignature data as 4 weight units per

byte, up to a maximum of 4 million weight units; this relatively reduces the cost

of spending UTXOs and increases the cost of creating new UTXOs [30].

In Ethereum, there is a more complex gas cost schedule for storage-affecting

operations, There are two types of operations that can affect the storage size:

1. The sstore opcode, which saves a value in the contract’s storage. If sstore

overwrites an existing value, it costs 5000 gas, but if it adds a new value to

storage, it costs 20,000 gas. If sstore is used to clear an existing value (so it

no longer has to be saved in storage), then it costs the contract 5,000 gas,

but a “refund” of 15,000 gas is given to the transaction sender.

2. Account creation. Accounts can be created6 in three ways:

6 Accounts can also be deleted through the selfdestruct opcode, which costs the contract 5,000 gas

but refunds the transaction sender a 24,000 gas.

24

• creating a contract using the create opcode (32,000 gas, plus 200 per byte

of code)

• creating a contract using a transaction (53,000 gas, or 32,000 + the 21,000

base cost of sending a transaction)

• sending ether to a previously non-existent account (25,000 gas if done

from a contract; if done from a transaction the 21,000 gas base cost).

The gas costs were computed by taking as a goal a cost of ≈ 200 gas per byte in

storage, estimating the number of bytes added to storage space by each

particular type of storage-filling operation, multiplying the two values, and then

adding an additional term to take into account other costs such as computation

and contribution to history size.

However, both the Bitcoin and Ethereum approaches have four large problems

that lead to very suboptimal outcomes:

• Storage is far too cheap in an absolute sense. For example, it costs 68 gas

to force current users of the Ethereum network to download and process

a byte, but 200 gas is enough to force all present and future users to do

the same (and store the data forever)

• The social cost of storage is far more linear, especially in the short and

medium run, than computation, bandwidth and disk IO. If the storage

normally increases by 1 MB per day, but in one month it increases by 100

kB per day most days except for the last day when it suddenly increases by

27 MB, the extra volatility in storage growth does not really hurt anyone.

• There is insufficient incentive to clear storage. In the extreme case,

depending on fee rates 10-60% of the UTXOs in Bitcoin’s state [31] have a

value sufficiently low that it costs more money to clear them than is

contained in the UTXOs. Most Ethereum contracts that get created do not

get destroyed, and many do not have any effective “storage hygiene”.

• There is no incentive to clear storage earlier rather than later. Even if

storage clearing refunds exist, at present they are not time-based.

The first problem can possibly be solved by simply making storage more

expensive. However, making storage more expensive and doing nothing else

25

would make it prohibitively expensive to use storage for very short periods of

time. One could offer a time-based refund, refunding more if a storage slot is

cleared earlier rather than later; the only arbitrage-free scheme for this is to

define some decreasing nonnegative function F(t) (eg. F(t) = h ∗ e−kt) of the

current time, and charge F(t) for filling a storage slot at time t, and refund F(t) for

clearing a storage slot at time t. 7 However, this approach is very capital-

inefficient, requiring large deposits to use storage, and additionally rests on the

assumption that the social cost of storage will continue to forever decrease

quickly enough that the integral is convergent.

A solution that does not have these problems is to implement a time-based storage

maintenance fee (sometimes also called “rent”). The simplest way to implement

this is simple: every account object is charged X coins per block per byte that it

consumes in the state. If an account has less coins than the amount needed to pay
for pokeThreshold blocks (say, pokeThreshold = 500), then anyone can “poke” the

account and delete it from storage, and claim k ∗ pokeThreshold blocks’ worth of

rent as a bounty where k ∈ (0,1]. Implementing the above is impractical as every

block going through every account and decrementing its balance has immense
overhead. However, this can be computed quite practically through lazy evaluation:

• All accounts store an additional data field, LastBlockAccessed

• An account’s current balance can be computed as

balance−perBlockFee∗sizeOf(account)∗(curBlock−LastBlockAccessed)

• An account can be poked if this value goes below perBlockFee ∗

sizeOf(account) ∗ pokeThreshold

• When an account’s state is modified, its balance is updated based on the
above formula, and LastBlockAccessed is set to the current block number

7 If different storage slots can have different F(t) functions, then at any point where F1

0(t) >

F2
0(t), there is an arbitrage opportunity where if the holder of F1 (the slower-falling function) no

longer needs their storage slot, they can instead assign permission to use it to the holder of the

other storage slot, and the holder of the other storage slot can clear it immediately.

Commented [b14]: Grammar edit:
“…it from storage and claim k…”

26

Suppose that we want the maintenance fee to be able to vary over time. Then, for

all block heights h we save in storage totalFee[h] = Ph
i=1 Fee[i] = totalFee[h − 1] +

Fee[h]. We compute the current balance as

balance−sizeOf(account)∗(totalFee[curBlock]−totalFee[LastBlockAccessed])

, where totalFee[curBlock] − totalFee[LastBlockAccessed] can be understood as

PcurBlocki=LastBlockAccessed Fee[i].

However, we will argue in favor of simply setting the maintenance fee to one

specific value (eg. 10−7 ETH per byte per year), and leaving it this way forever.

First of all, the social cost of storage use is clearly almost perfectly linear in the

short and medium run, but it is also much more linear in the long run. There is

no analog to the natural asymptote of bandwidth and computation costs in

blockchains where at some point the uncle rate reaches 100%; even if the storage

of the Ethereum blockchain starts increasing by 10 GB per day, then blockchain

nodes will be quickly relegated to only running on data centers, but the

blockchain will still fundamentally be functional. In fact, if you assume that node

storage capacity is distributed among the same distribution as the Cornell study

[6] shows bandwidth is, so NodeCount(W) = W
1 , and assume the logarithmic

utility function for node count, so D(x) = log(x) = −log(W) then the social cost

component from node centralization is roughly C(W) = log(W), or C0(W) = W
1 -

very steeply sublinear.

Second, the developer and user experience considerably improves if developers

and users can determine with exactness a minimum “time to live” for any given

contract far ahead in advance. Variable fees do not have this property; a fixed

fee does. Third, as cryptocurrency prices are more stable than transaction fees,

a fixed fee improves price predictability, in both cryptocurrency and fiat-

denominated terms. Fourth, a fixed fee is simple, both intuitively and in the semi-

formal sense of having low Kolmogorov complexity.

Commented [b15]: Grammar edit:
“…one specific value (eg. 10−7 ETH per byte per year)
and leaving it this way forever.”

27

9 Storage Pricing and User Experience

For a simple cryptocurrency, the harm from one particular UTXO or account

being deleted because its balance was completely drained paying storage

maintenance fees is very simple to understand, and there are no complex

interaction effects between different accounts or UTXOs that could result. For a

more complex smart contract blockchain, rent does introduce more

complexities, as there will be contracts that are very valuable for reasons other

than the ETH (or other protocol-level base currency) contained in them, such as

their function as software libraries, user-defined assets (ERC20, ERC721, etc) that

they hold, active relationships with other smart contracts, etc. Hence, there is

larger risk of an application suddenly becoming unusable because someone

forgot to pay a maintenance fee.

Such situations can generally be detected far ahead of time, but if this happens,

then there is a second backstop that can be added to mitigate the effect of

deletions arising from negligent failure to pay maintenance fees: a

hibernation/waking scheme. Accounts that run out of funds to pay their

maintenance fees do get removed from the state, but they are not deleted;

rather, they are hibernated. For any hibernated contract, anyone can submit

Merkle proofs that prove two claims:

1. A given hibernated contract exists.

2. That particular instance of hibernation was not already used to wake the

contract.

Condition (2) is needed to prevent a double-waking attack, where a contract is

hibernated once, and then the proof of its hibernation is used to wake the old

contract twice:

If the contract contains more funds at the time of the older hibernation that it

does at the time of the newer hibernation, then such an attack could be used to

create funds out of nowhere. The second kind of proof could be done as follows.

28

Define MinInterval as the minimum length of time a storage slot can be used for

(eg. 1 week):

• Add a condition to the fee payment logic: when a contract is woken, it must

be filled with at least (MinInterval + pokeThreshold) ∗ sizeOf(contract) ∗

feePerBlock ether. A contract also cannot withdraw so much that its

remaining balance after the withdrawal falls below this threshold.

• A proof of non-prior-waking consists of a Merkle branch pointing to the

contract’s address once every MinInterval

Adjusting MinInterval is a tradeoff: smaller values enable launching contracts

cheaply for shorter periods of time, but larger values shrink the size of the

witness required for waking, as well as shrinking the number of ever-growing

historical state roots that need to be stored. For a MinInterval of one week, and

a state with 230 accounts, waking a ten year old contract would require

500,000 bytes; a minInterval

of one month reduces this to 115,200 bytes.

10 Conclusion

Economic analysis can be used to significantly improve the incentive alignment

of resource usage inside of public blockchains. Simplistic models of

onedimensional weight limits often lead to prices that are highly mismatched

relative to social costs, and slightly more complex techniques involving a

combination of “Pigovian taxes” and cap-and-trade mechanics such as weight

limits can improve significantly on the status quo. Storage in particular is a very

different resource market from other types of resource markets, and should be

treated separately.

More economic analysis and econometric research can be used to help identify

further mechanisms that can be used to better reduce costs while discouraging

wasteful use of public blockchain resources.

Acknowledgements. [fill me in.]

Commented [b16]: Standardize variables: “a
MinInterval”

Commented [b17]: Grammar edit:
“…resource markets and should be…”

OR

“…resource markets, and it should be…”

29

References

[1] (2018). Bitcoin wiki: Weight units. URL https://en.bitcoin.it/

wiki/Weight_units.

[2] Knight FH (1921) Risk, uncertainty and profit. Courier Corporation.

[3] L´epissier A, Barder O (2014). A global carbon tax or cap-and-trade? part 1:

The economic arguments. URL https://www.cgdev.org/blog/ global-carbon-

tax-or-cap-and-trade-part-1-economic-arguments.

[4] Weitzman ML (1974) Prices vs. quantities. The review of economic studies

41: 477–491.

[5] Wikipedia (2017). Runaway climate change — wikipedia, the free

encyclopedia. URL https://en.wikipedia.org/w/index.php?title=

Runaway_climate_change&oldid=776345569. [Online; accessed 5-

May2017].

[6] Kyle Croman IEea Christian Decker (2016). On scaling decentralized

blockchains. URL https://fc16.ifca.ai/bitcoin/papers/CDE+16. pdf.

[7] Yonatan Sompolinsky AZ (2013). Accelerating bitcoin’s transaction

processing: Fast money grows on trees, not chains.

URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.433.6590&rep=rep1&type=pdf.

[8] Ayelet Sapirshtein YS, Zohar A (2015). Optimal selfish mining strategies in

bitcoin. URL https://arxiv.org/pdf/1507.06183.pdf.

[9] Buterin V (2018). Estimating cryptocurrency transaction demand elasticity

from natural experiments. URL https://ethresear.ch/t/ estimating-

cryptocurrency-transaction-demand-elasticity-from-natural-experime

2330.

[10] Haab T (2008). The long run elasticity of demand for gas. URL http:

//www.env-econ.net/2008/06/the-long-run-el.html.

30

[11] Bradbury D (2014). Bitcoin transaction fees to be slashed tenfold. URL

http://www.coindesk.com/ bitcoin-transaction-fees-slashed-tenfold/.

[12] Jameson H (2017). Recommendations to miners to change gas limit and gas

price settings. URL https://www.reddit.com/r/ethereum/

comments/6ehp60/recommendations_to_miners_to_change_gas_

limit_and/.

[13] Buterin V (2017). Tweet. URL https://twitter.com/

VitalikButerin/status/871218258212290560.

[14] Bradbury D (2014). Bitcoin transaction fees to be slashed tenfold. URL

https://www.coindesk.com/ bitcoin-transaction-fees-slashed-tenfold/.

[15] Southurst J (2017). Bat token sale causes hours of ethereum network delays.

URL http://www.bitsonline.com/ bat-sale-ethereum-network-delays/.

[16] Tim Roughgarden ET Vasilis Syrgkanis (2017). The price of anarchy in

auctions. URL https://theory.stanford.edu/˜tim/papers/jair. pdf.

[17] Town S (2018). Bitcoin transaction fees skyrocket as bithumb cleans out hot

wallets due to hack. URL https://cryptoslate.com/

bitcoin-transaction-fees-skyrocket-as-bithumb-cleans-out-hot-wallets-due-to-h

[18] Hertig A (2018). How to save on bitcoin’s soaring fees. URL https:

//www.coindesk.com/save-bitcoins-soaring-fees/.

[19] Shengwu Li MA (2018). Credible mechanisms. URL https://ssrn.

com/abstract=3033208.

[20] Rothkopf MH (2007). Thirteen reasons whythe vickrey-clarke-groves

process is not practical. URL https://cs.uwaterloo.ca/˜klarson/
teaching/F08-886/Rothkopf.pdf.

[21] Chicago P (2018). URL https://gastoken.io/.

[22] (2018). Bitcoin wiki, non-specialized hardware comparison. URL https:

//en.bitcoin.it/wiki/Non-specialized_hardware_comparison.

[23] (2018). Bitcoin wiki, mining hardware comparison. URL https://en.

bitcoin.it/wiki/Mining_hardware_comparison.

31

[24] Andrew Miller JK Ahmed Kosba, Shi E (2014). Nonoutsourceable scratch-off

puzzles to discourage bitcoin mining coalitions. URL http:

//soc1024.ece.illinois.edu/nonoutsourceable.pdf.

[25] AuthorGhosh BF M Richardson, Jansen R (2014). A torpath to torcoin: Proof-

of-bandwidth altcoins for compensating relays. URL

https://www.nrl.navy.mil/itd/chacs/ ghosh-torpath-torcoin-proof-

bandwidth-altcoins-compensating-relays.

[26] Sergi Delgado-Segura GNA Cristina Perez-Sola, Herrera-Joancomartı J

(2018). Analysis of the bitcoin utxo set. URL https://eprint.iacr. org/2017/1095.pdf.

[27] Moore C (2013). How to calculate transaction size before sending (legacy

non-segwit - p2pkh/p2sh). URL

https://bitcoin.stackexchange.com/questions/1195/

how-to-calculate-transaction-size-before-sending-legacy-non-segwit-p2pkh-p2sh

[28] (2018). Bitcoin wiki: Transaction. URL https://en.bitcoin.it/

wiki/Transaction#General_format_.28inside_a_block.29_of_

each_output_of_a_transaction_-_Txout.

[29] (2018). Bitcoin wiki: Script, anyone can spend outputs. URL https:

//en.bitcoin.it/wiki/Script#Anyone-Can-Spend_Outputs.

[30] (2017). Why a discount factor of 4? why not 2 or 8? URL https://segwit.org/

why-a-discount-factor-of-4-why-not-2-or-8-bbcebe91721e.

[31] C Perez-Sol‘a GNA S Delgado-Segura, Herrera-Joancomarti J (2018). Another

coin bites the dust: An analysis of dust in utxo based cryptocurrencies. URL

https://eprint.iacr.org/2018/513.pdf.

[32] McCorry P, Shahandashti SF, Hao F (2017) A smart contract for boardroom
voting with maximum voter privacy. In: Proceedings of Financial
Cryptography and Data Security. International Financial Cryptography

Association. URL http://fc17.ifca.ai/preproceedings/paper_80. pdf.

32

Appendix

A The Full Ethereum Gas Function

[Put the full gas function here.]

