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Abstract 

[this will be reworked at the end] 
One of the most challenging issues in blockchain protocol design is how 

to limit and price the submission of transactions that get included into the 

chain. Every transaction confers some private benefit to its sender, but 
transactions also incur social costs to the network as a whole, as every node 
in the network must process every transaction. This results in a classic 
example of the “tragedy of the commons” problem. In such cases, 

economic theory generally dictates pricing the resources in question, and 
setting the price to equal the social cost that the act of consuming each 
resource imposes on the network. However, the heterogenous nature of 
the computation, bandwidth and storage resources involved, the large 

portion of the social cost that exists in the form of intangible and difficult-
to-value harms such as centralization risk, and the need to create an 
automated algorithm that can set prices in a wide range of future scenarios 
without human intervention all make it very difficult to set restrictions that 

are optimal. In this paper, we discuss tradeoffs between different 
approaches and strategies that can improve on the status quo on the 
margin. 

1 Introduction and Model 

A blockchain is a decentralized network consisting of a large number of 

computers that must all process transactions that transaction senders upload to 

the chain. Hence, a transaction that is published to a blockchain confers some 

private benefit to its sender, but also confers an external social cost to the 

network’s participants. In order to account for this social cost, and prevent abuse 
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of the blockchain as a common pool resource, some economic mechanism for 

restricting what transactions get included is required. However, there are many 

types of economic mechanisms that can be used to solve resource pricing 

problems of this type, and understanding which one is optimal requires more 

deeply understanding the nature and types of social costs in question. 

The social costs can be broken down in two ways. First, one can categorize by 

fundamental type of resource expenditure: 

Bandwidth cost: the cost of all nodes downloading each submitted 

transaction, bundling it into a block, and then rebroadcasting the 

transaction as part of some block. 

Computational cost: the cost of every node verifying each transaction. 

History storage cost: the cost of storing the transaction for all nodes that 

store the blockchain’s history, for the time for which the history is stored 

(possibly infinity). 

State storage cost: the marginal cost of the impact of the transaction on 

the size of the state (eg. contract code, account balances) that every node 

must store to be able to process further transactions. 

Note that the first two costs are costs that are paid by the nodes that are online 

at the exact time when the transaction is included, the third cost is paid by nodes 

that are online at that time or in the near future, but the fourth cost must be paid 

by all nodes forever, unless a scheme is introduced that makes all state entries 

temporary. 

Second, one can categorize by different types of first and second-order effects. 

We can understand these effects as follows. We can consider a blockchain to be 

a network of n computers, C1...Cn, where any transaction that gets included in 

the blockchain must be processed by all of the nodes that are still online in the 

network. Some transactions are more complex than others; each transaction has 

some “weight” W that represents the quantity of resources needed to process it. 

Each user Ui has some direct resource cost function Ri(W) representing the cost 

to the user of processing a given amount of weight. This cost can include 

electricity and bandwidth costs, marginal disk wear and tear, inconvenience from 

a user’s other applications running more slowly, reduced battery life, and so on. 
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For sufficiently high w, at some point the costs become unacceptable to any 

given user, at which point the user will drop offline (we assume Ri(W) is flat above 

this point). Let NodeCount(W) be the number of users still online at weight W. 

Note that different users could drop offline at different points for either of two 

reasons: (i) some users have a lower resource cost than others, and (ii) some 

users value being connected to the blockchain more than others. 

There is some utility function D(k) reflecting the social value of the level of 

decentralization achieved by having the number of online nodes, which can be 

translated into a function D(W) of the total transaction load. There may also be 

some cost function A(W) that reflects the increased attackability of the network 

as more transactions get included. We can summarize all of these costs as a 

combined cost function C(W) = Pi Ri(W) + (A(W) − A(0)) − (D(W) − D(0)). 

The above suffices as a model of a blockchain for the purpose of this paper; we 

do not need to care about details about proof of work, proof of stake, block 

structure, etc, except insofar as the details of those consensus algorithms and 

blockchain design patterns affect NodeCount and A, and therefore C. 

2 Prior Work 

In Bitcoin and Ethereum, resources are priced using a simple “cap-and-trade” 

scheme. A metric is defined for the quantity of resources (called “weight” or 

“gas”) that a transaction consumes, and there is a protocol-defined maximum 

total quantity of resources that the transactions contained in a block will 

consume. Validators have free rein to select transactions as long as the total 

weight of the block is below that limit. An equilibrium is established where users 

attach fees to their transactions which go to the validator that includes the 

transaction in a block, and validators select the transactions paying the highest 

fee per unit weight. In Bitcoin, for example, the weight limit is a static 4 ∗ 106, 

and weight is defined as follows [1]: 

 weight(block) = 4 ∗ len(block.nonsignature data) + len(block.signature data) (1) 
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Where len(x) returns the number of bytes in x. For technical reasons that have to 

do with attempting to price in history and state storage costs, the bytes in 

signatures of transactions are priced more cheaply than the nonsignature data in 

transactions. In Ethereum, there is a measure called “gas” which incorporates 

the size of the block as well as the computational cost of verifying transactions 

and executing smart contract code. For simplicity of exposition, this can be 

approximated as: 

weight(block) = 68∗len(block) + 3∗numcomputationalstepsinblock (2) 

The gas function is in reality much more complex, but similar in spirit. There is a 

per-block gas limit, which validators can vote on (when creating a block, a miner 

can “upvote” or “downvote” the gas limit by a maximum of ∼0.1%), and at the 

time of this writing most validators are voting for a gas limit of ∼8 million. 

A major problem with this approach is that a priori it has been difficult to 

determine a reasonable weight limit, and the question has often been a source 

of controversy [?]. The purpose of this paper will be to try to go beyond the one-

dimensional design space of “there must be some limit, what should it be?” and 

explore a much larger space of policies that attempt to address transaction 

resource consumption externalities, and try to develop policies that are both 

closer to optimal at the present time, and more robust to changes in economic 

circumstances in the long-term future, reducing the need for “extra-protocol 

interventions” such as hard forks. 

3 Pricing Resources under Uncertainty 

Blockchain resource pricing has many parallels to regulatory responses to 

environmental pollution. Particularly, although the validator of a block is 

compensated for publishing the transactions, the cost of that block being 

published is borne by all full nodes, much like how pollution produced by one 

factory must be suffered by everyone living in the village (if not an even larger 

area). This cost being borne by all full nodes is the negative externality that we 

wish to limit. Both blockchains and environmental regulators use economic 
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interventions to limit activities with negative externalities, where the negative 

externalities have both measurable components as well as components with high 

Knightian uncertainty (i.e., “unknown unknowns”) [2]. Many results from 

environmental economics [3] are directly applicable to blockchains. 

Weitzman’s 1974 paper “Prices vs Quantities” [4], outlines the tradeoffs between 

regulation by price (e.g., carbon taxes) versus regulation by quantity 

(e.g., issuing a fixed number of permits and letting them trade on the market). 

One important insight that Weitzman cites is that if the policymaker has perfect 

information about the social cost function and the demand curve for consuming 

the resource (a.k.a. the “benefit function”), the two approaches are equivalent: 

for any desired price, one can choose an equivalent quantity-based policy by 

issuing exactly the number of permits equal to the equilibrium quantity that 

would be purchased at that price. However, when there is uncertainty about the 

position and shape of the cost-benefit curves, the two approaches have 

substantial differences. 

Consider a world where the marginal social cost (negative externalities) of 

consuming a resource is fixed, but the marginal benefit function is rapidly 

decreasing. If a policymaker sets a quantity limit that is too low, then the quantity 

limit will intersect the marginal benefit curve at a point where the cost and 

benefit are much higher than the social cost, and consumers suffer very large 

opportunity costs from nonconsumption. But if a policymaker instead sets a 

price, then the damage from a miscalculation is much lower. 

If on the other hand, the private cost of abstaining is fixed yet the marginal social 

cost of consumption increases rapidly, then setting a price is riskier. For example, 

consider a scenario where the social cost of consuming < 

1,000 resource units is acceptable, but going above 1,000 risks disastrous 

consequences (e.g., some “tipping point” theories of global warming [5]). The 

marginal social cost of consuming an additional resource unit in a world where 

people are already consuming 1,050 resource units will be much higher than the 

marginal social cost in a world where people are merely consuming 900. In this 

case, if a policymaker anticipates a consumption of 900, and targets a tax to equal 

the marginal social cost at the 900 level, then the policy will be massively 

underpricing the additional social harm caused by additional resource 
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consumption. On the other hand, a policymaker that simply issues 900 permits 

and allows them to trade on the market would see the risk mitigated. 

 
 Quantity Quantity 

Figures (a)–(b) show the first scenario in which it’s better to set a price. 

Figures (c)–(d) show the second scenario where it’s better to set a quantity. 

Taken together, if the consumer’s marginal private costs increase faster with 

quantity than the marginal social costs, that is when 

private benefit00(quantity) 

 > 1 , (3) 

00 

social cost (quantity) 

then seting prices is better, and in other cases setting quantities is better. Note 

that we need to use the second derivative because we are specifically talking 

about the the rate of change in marginal costs. 
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distributed. If changes in the cost and benefit curves are correlated, then an 
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additional term must be added into the choice rule, increasing the relative 

attractiveness of limiting quantity. To see this intuitively, consider the extreme 

case where uncertainty in cost and benefit is perfectly correlated; in such a 

scenario, if original estimates of cost and benefit prove incorrect, both curves will 

move up or down in lockstep, and so the new equilibrium will be directly above 

or below the original estimated one; hence, a quantity-targeting policy would be 

perfectly correct and a price-targeting policy would be pessimal. This analysis 

covers only two possible policies, but a much greater space of options is 

available. One can think of policy space as the space of possible supply curves for 

a given resource, where a pricing policy represents a horizontal supply curve and 

a cap-and-trade scheme represents a vertical supply curve. Various forms of 

diagonal supply curves are also possible, and in most cases some form of not 

strictly horizontal or vertical supply curve is optimal. 

Should blockchains have a block size limit, or should they not have a limit but 

instead charge a fixed fee per resource unit consumed, or would some 

intermediate policy, one which charges a fee as a function F(w) of the weight 

included in a block and where F 0(w) is increasing and possibly reaches an 

asymptote, be optimal? To estimate optimal policy under the prices vs. 

quantities framework, we start off by attempting to estimate the social cost 

function. 

A study from Cornell [6] provided an estimate of the node count as a response 

to the weight load of the blockchain. The study was conducted at a time when 

Bitcoin’s weight formula was simply one weight unit per byte, with a weight limit 

of 106. The study found that 90% of nodes would remain online at W = 4 ∗ 106, 

and 50% of nodes would stay online at W = 3.8 ∗ 107. 
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As a first approximation to quantifying the value to decentralization from having 

more nodes, we can use a logarithmic utility: D(W) = log(NodeCount(W)). What we 

discover is that NodeCount(W) is roughly proportional to W1 , which in turn implies 

that D(W) = −log(W). This in turn implies D0(W) = W
1 : the marginal social cost 

function is decreasing. 

However, this model fails to take into account other kinds of harms that come as 

a result of large blocks taking a longer time to propagate. A study by Decker and 

Wattenhofer in 2013 found that the time that it takes for a block to propagate 

through the network is roughly linear in the block’s size. Zohar and Sompolinsky 

[7] show that with a network delay t and block time T, the rate of honest block 

creation slows from  to T
1

+t, reducing resistance to “51% attacks” from  to q 

where 1−
q

q 
∗ 

T
1 = T

1
+t, i.e. q = 2T

T
+t. It seems reasonable to define a cost function 

A(x) = MinAttack  , where MinAttack(x) is the minimum size of an 
attack that can succeed; since MinAttack(x) = 2T

T
+t, this implies that A(x) = 2 + Tt . 

t is a function of W; if t is linear in W, then that implies that A(W) = 2 + k ∗ W for 

some constant k, so the social cost function is linear. 

In the case of Ethereum, we can try to look at the correlation between block gas 

usage and the “uncle rate”, a measure of the percentage of blocks produced that 

do not make it into the canonical chain and hence that do not contribute to chain 

security. 
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Relationship between block gas limit and uncle rate 

The nonlinearity in this figure is in part an artefact of the data; during the period 

in late 2017, the composition of transactions changed away from smart contract 

use cases toward ERC20 token transfers, which affect uncle rate more than smart 

contract uses as their gas consumption is largely from bandwidth and 

computation costs and not code and storage. The dots at the top left are the 

2016 DoS attack. Here’s the same graph rescaled with the dots from late 2017 

and the 2016 DoS attacks removed: 
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Relationship between block gas limit and uncle rate, Dec 2016 to Sep 2017 

However, there are superlinear costs at play as well. Clients need to process both 

the main chain and the blocks that do not become part of the canonical chain; 

hence, if a level of canonical-chain throughput x causes an uncle rate p, then the 

actual level of computational burden is 1−
x
p, with a denominator that keeps 

decreasing toward zero as the canonical-chain throughput increases. 

Additionally, with high uncle rates selfish mining attacks become much easier [8], 

and the reduction in node count itself leads to pooling, which makes selfish 

mining more likely. There is thus a qualitative sense in which the social cost of 

increasing W to whe point where t = T is more than ten times that of setting W 

so that t = T ∗ 0.1. 

Even if the cost function is superlinear at the extremes, however, it appears to 

be linear at the lower side of the distribution, and the arguments from the Cornell 

study suggest it may even be sublinear. If the block size increases from 10kb to 

1000kb, a significant social cost is incurred because IoT devices, smartphones, 

Raspberry Pis, etc have a much harder time staying connected, but an increase 

from 1000kb to 1990k does not have such a high cost, because the range of use 

cases that become unusable within that interval is much lower. Hence, it seems 

plausible that the social cost curve is U-shaped: 

 

Rendering of a possible total social cost curve for blockchains accepting transactions 
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3.1 Estimating the Private Benefit Curve 

The private benefit curve, the demand for sending transactions, is much harder 

to estimate. We will try to make some estimates of a single variable, the elasticity 

of demand (ie. by what percent demand increases with a 1% fall in price), by 

looking at some “natural experiments” in the Bitcoin and Ethereum blockchains. 

One type of natural experiment is to look at day-by-day transaction fee changes 

during a situation where the capacity of a blockchain suddenly changes due to 

some extrinsic factor; Ethereum gas limit changes, and Bitcoin block time 

instability due to interaction effects between Bitcoin and Bitcoin Cash mining, 

are the easiest two cases. Charts show a correlation between reduced Bitcoin 

blockchain capacity due to temporary block time increases and spikes in 

transaction fee levels: 

 

Bitcoin blocks per day 

 

Bitcoin transaction fees 

A more thorough analysis of similar data [9] gives elasticities of 0.4-0.7 for 

Bitcoin, and 1-2 for Ethereum. 

Additionally, it is important to note that this only measures the short-term 

demand curve looking at actions taken over a few days to months and does not 

take into account longer-term adjustments that could happen in the market only 
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after a couple of years; in the real world, for example, it is an established fact 

that long-run demand elasticity of gasoline is higher than short-run elasticity 

[10]; and this is likely true with Bitcoin transaction fees and Ethereum gas as well. 

So far, this model suggests a benefit curve with slope between -0.4 and -2 (if 

rescaled so that the current supply/demand intersection is at (1,1)), and a social 
cost curve with (rescaled) slope that is difficult to determine, but at current 

margins in various blockchains is likely to be low and may be positive or negative. 

This suggests that a flat per-weight-unit in-protocol transaction fee, coupled with 
a hard limit at the point where the marginal social cost starts rapidly increasing, 

is superior to a pure weight limit-based regime. 

—————— 

4 Cryptocurrency Prices 

In the short run, one can assume that price movements, changes in the social 

cost functions and changes in usage are all random and independent. In the long 
run, however, the three factors are highly intertwined. Specifically, (i) the price of 

a cryptocurrency; (ii) the social cost curve [as the number of beneficiaries of the 

system increases, and the number of full nodes also increases]; and (iii) the 

benefit curve [as there are more users sending transactions] are all highly 

correlated with a single variable, which we might call “adoption”. 

We can make a model as follows. Suppose that a k-factor increase in adoption 

leads to: 

• A k-factor increase in the price. 

• A k-factor increase in the number of transaction users, ie. a k-factor 

horizontal stretch of the demand curve. 

• A k-factor increase in the number of users and the number of full nodes. 

Let us assume for simplicity that the demand elasticity is 1, and that the 

decentralization utility of N full nodes is D(N) = log(N), so a k-factor increase in 

the number of full nodes simply adds utility log(k); the k-factor increase in the 

number of users scales up the social cost curve by a factor of k, and the private 
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benefit curve scales by a factor of k. This leads to the result that, denominated in 

the cryptocurrency in question, adoption leaves the private benefit and social 

cost curves unchanged, and so there is also no correlation (!!). 1 

Reality is of course more complicated than this simple model, but the model does 

suffice to show that, because of the lucky coincidence of being forced to 

denominate fees in a cryptocurrency whose price is itself proportional to 

adoption, there is at least no very strong first-order reason to expect positive 

correlation between the nominal benefit and cost curves. Hence, the arguments 

for using fixed fees in addition to gas limits still stand. 

Arguably one of the key reasons behind the un-intuitiveness of fixed fees is that 

for most of the history of blockchain protocols, blockchains operated in a “non-

full blocks” mode, where there was always space in a block to include more 

transactions. The fee required to be paid was only a minimal value, set as a 

software default. When a cryptocurrency experiences a large price rise, this 

causes fees experienced by users to rise greatly, until eventually the defaults are 

manually adjusted downwards [11–13]. Hence, transaction fees were kept 

artificially stable by what are essentially political constraints, whereas no such 

stabilizing effect existed for cryptocurrency prices. 

 
Gas prices in gwei. The two marked sudden drops are coordinated attempts by miners and developers to reduce minimum 

accepted gasprices, first from 50 gwei to 20 gwei, then from 20 gwei to 4 gwei. Similar coordinated fee decreases have 
taken place in Bitcoin [14]. 

However, Bitcoin has recently entered the “full blocks” regime, where 

transactions are in permanent competition with each other to get included, and 

Ethereum has entered this regime during high-intensity token sales [15]. In this 

mode, fees become more volatile, and rises in adoption contribute to even more 

                                                     
1 An astute reader might ask whether or not there is empirical data to support this 
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volatility. In Bitcoin, this has led to a ∼ 10x increase in fees in less than a year; in 

Ethereum, fees increase by a similar factor during token sales. Even on average, 

in the last year transaction fees have become considerably 

 

claim; unfortunately, far less than a single cryptocurrency “business cycle” (in the financial market 

bubble sense) has passed since blockchains started to typically have “full blocks”, so there is far 

too little empirical data to make an assessment. 

more volatile than the ETH price: 

 
ETH price (lower) and average gasprice in USD (higher), Oct 2017 (post-Byzantium-hardfork) to July 

2018. The mean absolute daily percentage change is 4.2% for the ETH price in the shown time period, and 16.0% for the 
USD-denominated average gasprice, and is standard deviation is used the average gasprice is ≈ 25 times more volatile 

due to spikes. 
2 

In the absence of political pressure on miners to make further gas limit increases, 

we see no reason for this state of affairs not to continue; and if political pressure 

can be used to increase gas limits when needed, then the same processes could 

be used to adjust a fixed dee. 

5 Transaction Fees and Auction Theory 

So far, we have discussed resource pricing policies in the abstract, but we have 

not discussed the specific mechanism that is used to implement them. The field 

of mechanism design has made many discoveries about what types of auctions 

perform better under what circumstances, and much of it is relevant to 

transaction fee markets. 
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In nearly all blockchains so far, transaction fee markets work as follows. 

Transaction senders are free to specify any fee they want as part of their 

transaction when they broadcast it. Transactions are included into blocks by 

block proposers, which we can assume here are randomly selected for each 

block. Block proposers are constrained by the weight limit, which specifies how 

much they can include in each block. Naturally, block proposers will 

 
2Source: http://etherscan.io/charts; spreadsheet with data and calculations at 

http://vitalik.ca/files/FeesAndETH.ods 

include the transactions that pay them the most, and as part of the protocol they 

collect the fees that are specified in the transaction. 

In mechanism design speak, this is a first price auction, characterized by the key 

property that “you pay what you specify, and only if you win”. This kind of auction 

is generally considered to be deeply suboptimal, because it requires complex and 

inefficient strategies on the part of the buyers (here, transaction senders). For 

example, suppose that a given buyer values their transaction getting included at 

$1. How much should they bid? The answer is certainly less than $1; but how 

much less? If everyone else is bidding $0.05, then clearly $0.06 will suffice. If 

everyone else is bidding fees that have some complex distribution with mean 

$0.10 and standard deviation $0.05, with a fat tail on the right side, then the 

calculation becomes extremely complicated, and very often there are no efficient 

equilibria. [16] 2 

The typical alternative is for selling many items a kth price auction: everyone pays 

the same as the lowest fee that gets included. 3 This mechanism allows for a very 

simple, and optimal, buyer-side strategy: if a transaction sender values getting 

their transaction included at $x, they bid $x. If the minimum bid in a block ends 

up being less than $x, they get in (and pay less than $x, so they are happy that 

they got in), but their bid being higher does not marginally affect the amount 

                                                     
2 The inefficiency of first price auctions in existing blockchain networks has already shown 

itself with many cases of users and businesses overpaying for fees [17], and self-help articles 

directing users to tools that facilitate “fee estimation” [18]. 
3 Technically, everyone should pay the same as the highest fee that did not get included, but this 

is even harder to implement and enforce, and for a sufficiently large number of items the 

difference between the two is very minor. 
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they pay. If the minimum bid in a block ends up being more than $x, the 

transaction sender does not get included, and is happy they were not included, 

because were they included they would have had to pay a fee higher than they 

were willing to pay. 

However, kth price auctions have a different kind of serious flaw: they are not 

incentive-compatible for the auctioneer (ie. the block proposer). First of all, if a 

block proposer is presented with a suitably steep demand curve, it is in their 

interest to fill the block with at least some high-fee-paying “dummy 

transactions”, displacing low-fee-paying transactions and sacrificing the revenue 

from these transactions but at the same time dramatically raising the fee that 

everyone else has to pay. 

 

A more serious issue is collusion between the proposer and some transaction 

senders. A proposer can potentially collude with low-fee tansaction senders (eg. 

suppose there is a single entity, like an exchange or mining pool, that sends such 

transactions and can b easily negotiated with) that are sending transactions with 

some fee flow. The proposer can ask them to instead send their transactions with 

fee fhigh, and refund them fhigh − flow2 . The proposer’s revenue is now even higher: 

the proposer benefits from the increased height of the “rectangle” of fee 

revenue that they would get with the “dummy transaction” strategy above, but 

they would also get a portion of the revenue from transactions that they would 

otherwise have sacrificed. 4 

Hence, both first-price and second-price auctions are unsatisfactory. However, 

note that these issues are exclusively properties of auctions, and not properties 

of a fixed-price sale. If being included in the blockchain simply requires paying 

                                                     
4 For a more detailed treatment of similar issues, see [19] and [20]. 
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some minFee, then transaction senders have a simple strategy that they can use 

to set the fee on their transaction. Let v be a user’s private valuation for a 

transaction getting included in the next block. The user would check if v > minFee; 

if it is, they would bid minFee+ (to provide a slight incentive for the block 

producer to include the transaction); if v < minFee they would not send the 

transaction. This is a very simple strategy that does not require knowledge of 

others’ valuations, and is optimal for the transaction sender. 

6 Improving the Second Best 

So far the evidence suggests that hard quantity limits are overused and price 

floors are underused. But how do we even start trying to set the price floor? 

What we will show in this section is that in cases where a price floor is better, it 

is possible to improve upon a hard quantity limit in a way that specifically 

alleviates the problem of deadweight losses from short-term transaction fee 

volatility, without having to set a specific price as a protocol parameter. Clearly, 

large deadweight losses from short-term transaction fee volatility exist: 

Ethereum transaction fees are sometimes 2 gwei and sometimes 100 gwei, but 

it is definitely not true that the marginal social cost of a block containing 8000001 

gas rather than 8000000 is 50 times higher in the case where the latter is true. 

Suppose that we start with an existing policy which sets a weight limit wmax. We 

normalize weight units so that the optimal weight limit and transaction fee level 

are both 1. For simplicity, we assume linearity of the marginal social cost and 

demand function: C0(1+x) = 1+C00 ∗x and D0(1+x) = 1−D00 ∗x, where D00 can also 

be viewed as the demand elasticity. Suppose that wmax is set incorrectly, to 1 + r 
for some r (in reality, wmax will of course inevitably be set incorrectly, though we 

likely won’t know the value of r or even if it is positive or negative). We can draw 

a deadweight loss triangle to calculate the size of the economic inefficiency: 

Commented [b11]: Grammar edit: 
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The area of the triangle, representing the total economic losses from an 

excessive (or if r is negative, insufficient) number of transactions being included, 

is ); for simplicity we’ll call this value A. Now suppose that, like 
in reality, demand is volatile, which we will approximate with a simple model 

where D0(1 + x) half the time equals to 1 + D00 ∗ x + δ and the other half of the 

time equals to 1 + D00 ∗ x − δ. In the −δ period, the height of the triangle increases 

from r ∗ (C00 + D00) to r ∗ (C00 + D00) + δ, or a 
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By similar triangle laws the width increases by the same proportion, so the area 

increases from A to A . In the +δ period, the area decreases to 

A . The average of (1+x)2 +(1−x)2 is 1+x2, 

so the average of the two areas is A  

Now, suppose we use a different algorithm. The protocol targets a long run 

average weight of 1 + r, but it does so by setting a price for transactions that 

adjusts slowly over time. The price that it would target is in this case is 1−D00 ∗r. 

Now, let us consider the average deadweight loss. Moving demand up by δ will 

move the triangle to the right by Dδ
00 , which increases its height by D . 

 

The original height was r ∗ (C00 + D00), so the height increases by a ratio 
of 1 + 

r

∗(C +D ). By similar triangle laws the width increases by the same 

proportion, and in the −δ case we flip the sign in a similar way; the end result is 

that the average area is A  

It should be clear that the average area in the second case is smaller (ie. less 
δ∗C00 

inefficiency) than the average area in the first case if and only if r

 
r∗(C00

δ+D00), or alternatively δD∗C
0000 00 < D00, and in < δ, or even more 

simply C 
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other cases the average area in the second case is larger. What this thus proves 

is a sort of marginal analogue to Weitzman’s 1974 result [4], where in the exact 

same case where choosing a price is better than choosing a quantity, a quantity 

limit can be improved on the margin by replacing it with a “flexible limit” that is 

really just a price level that adjusts over the medium term to target the quantity 

limit. 

We now propose an alternate resource pricing/limit rule that we believe 

provides superior properties to a hard limit wmax: 

• Define a constantly adjusting in-protocol parameter minFee. Transaction 

senders are charged a fee of minFee per weight unit; this fee is either 

burned or redistributed to consensus participants other than the proposer 

of the block that included this transaction; this prevents profitable side-

dealing arrangements where the transaction senders are refunded this fee. 

• Define a new weight limit, wnewmax = 2 ∗ wmax. 

• Define an adjustment speed parameter adjSpeed, with 0 < adjSpeed < 

2. 

• In any particular block, let wprev be the amount of weight consumed in the 

previous block, and minFeeprev be the previous block’s minFee value. See 

minFee for this block to equal minFeeprev ∗ 
(1 + (

w newmax
wprev −  

adjSpeed. 

This rule is likely to outperform simple limits in terms of allocative efficiency for 

the reasons cited above, and also (except during sudden and extreme spikes) 

eliminates the issues with first and second price auctions described above. 5 

As a philosophical note, complex gas and fee policies are often criticized as being 

a form of economic “central planning”, which is frowned upon because planners 

may not have aligned incentives and have less information than participants 

                                                     
5 In the specific case of storage pricing, a quirk in Ethereum gas pricing rules that allows 

storage to be (mostly) paid for before it is actually used allows for second-layer markets like 
GasToken [21] where gas can be burned to generate “congealed storage use privileges”, which 
can then be used later. The possibility of doing this unintentionally creates efficiency gains similar 

in type, though smaller in size, than those described here. 
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closer to the day-to-day economic activity. That said, note that any transaction 

pricing policy, whether fee-based or limit-based, necessarily has centrally 

planned parameters. I would argue that the correct way to apply the Hayekian 

anti-central-planning intuition is to treat it as saying that central plans are less 

bad if those plans have lower Kolmogorov complexity, a simple strict weight limit 

being an ideal example. 

Plans with low Kolmogorov complexity are ideal because they have fewer moving 

parts that can fail, are less likely to overfit, and because there is so little entropy 

in the specification and parametrization of the plan, it is very difficult to encode 

attempts to favor or disfavor specific users or applications; this helps foster a 

shared impression of fairness. For this reason, we will argue for policies that are 

as simple as possible while still being substantial and needed improvements on 

the status quo. 

7 Heterogenous Resources in Computation and Bandwidth 

The above weight limit analyses assume that a single scalar can sufficiently 

quantify the burden a transaction imposes upon the network. In reality, 

however, a transaction consumes several heterogeneous resources: calculation 

and state I/O (here grouped into “computation”), bandwidth, and state storage. 

Each of these have different properties, and an optimal pricing scheme should 

likely take these differences into account. 

We will start off by looking at computation and bandwidth. Computation and 

bandwidth both contribute to the computational load of a node, and both 

contribute to “uncle rate”; hence, both seem to be subject to the same 

mechanics of linear or sublinear social cost at lower weights and superlinear 

social cost at higher weights. If the factors creating the superlinear social costs 

are independent, it may be prudent to have a separate gas limit for computation 

and block size limit for bandwidth; however, because much of the superlinearity 

comes from the uncle rate itself, and the impacts of computation and bandwidth 

on uncle rate seem to be additive, it seems more likely that a single combined 

limit actually is optimal. 

One question worth asking is: can we somehow measure in-protocol the social 

cost of computation and bandwidth, or at least a more limited statistic like the 

maximum level of computation and bandwidth that the median client can safely 
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handle? Proof of work mining difficulty does very directly give an exchange rate 

between a blockchain’s native cryptocurrency and at least one kind of 

computation: if a blockchain’s block reward is R, its mining algorithm is H, and its 

difficulty is D, then in general we should expect cost(H) ≈ DR. 

However, this approach is extremely fragile against advances in technology such 

as specialized hardware. [22] and [23] suggest a roughly 1000-5000x difference 

between the mining efficiency of ASIC and GPU hardware for mining Bitcoin at 

present, and a further disparity exists between GPUs and CPUs. This suggests 

that, were mining difficulty used as a proxy to determine the computational 

capacity of clients in order to determine Bitcoin block size limits, a block size limit 

initially targeted to 1 MB would by now have grown to be many gigabytes. A 

block weight limit targeted to an optimal value based on the assumption of a 

10000x disparity between ASICs and CPUs today may in contrast lead to the limit 

becoming 100-10000x below optimal if the advantage of specialization decreases 

in the future, due to either more use of adaptive semi-specialized hardware such 

as FPGAs in consumer hardware or specialized hardware being unable to squeeze 

out larger efficiencies once even general-purpose hardware starts to come close 

to thermodynamic limits. 

The proof-of-work-based cost metric has an additional flaw: cost(H) is only the 

cost of calculating a computation once. The actual social cost also depends 

heavily on the number of nodes in the network, as each node will need to run 

the computation, and this is also extremely difficult to measure. This issue can 

be circumvented by changing the mechanism, instead requiring miners to 

compute a non-outsourceable proof of work [24] and setting a computation gas 

limit based on the highest amount of work submitted within some time period, 

but this does not get around the specialized hardware issues. One can try to 

incentivize transaction submitters to submit these proofs, but that carries the 

high risk of incentivizing users to use wallets with centralized custody of private 

keys. 

One can similarly attempt to measure bandwidth with proofs of bandwidth [25], 

but this also carries a high risk of incentivizing concentration. Fundamentally, 

incentive-compatibly measuring the level of capability of a node requires 

incentivizing them to reveal capability, with higher rewards for higher levels of 
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revealed capability, and this inherently incentivizes specialized and concentrated 

hardware-driven centralization. 

8 Pricing State Storage 

Pricing state storage is a fundamentally different kind of burden from 

computation, bandwidth and state IO (treated above as being simply another 

kind of computation) for one simple reason: whereas those costs are one-time 

burdens on validators and nodes that are online at that particular time, state 

space must be stored by, and thus burdens, all full nodes, forever. 

In Bitcoin, there is no explicit fee for filling storage; transactions are simply 

charged per byte, and filling storage is charged for indirectly because filling a new 

storage slot (consuming an average 61 bytes [26]) requires adding about 

34 bytes [27] to a transaction (at least for “regular” outputs; non-standard 

outputs can be made for as little as 9 bytes [28] [29]), so there is a maximum 

amount by which one can increase the size of the UTXO set within a single block. 

The recent Segregated Witness fork includes a modification where signature data 
is charged as 1 weight unit per byte and nonsignature data as 4 weight units per 

byte, up to a maximum of 4 million weight units; this relatively reduces the cost 

of spending UTXOs and increases the cost of creating new UTXOs [30]. 

In Ethereum, there is a more complex gas cost schedule for storage-affecting 

operations, There are two types of operations that can affect the storage size: 

1. The sstore opcode, which saves a value in the contract’s storage. If sstore 

overwrites an existing value, it costs 5000 gas, but if it adds a new value to 

storage, it costs 20,000 gas. If sstore is used to clear an existing value (so it 

no longer has to be saved in storage), then it costs the contract 5,000 gas, 

but a “refund” of 15,000 gas is given to the transaction sender. 

2. Account creation. Accounts can be created6 in three ways: 

                                                     
6 Accounts can also be deleted through the selfdestruct opcode, which costs the contract 5,000 gas 

but refunds the transaction sender a 24,000 gas. 
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• creating a contract using the create opcode (32,000 gas, plus 200 per byte 

of code) 

• creating a contract using a transaction (53,000 gas, or 32,000 + the 21,000 

base cost of sending a transaction) 

• sending ether to a previously non-existent account (25,000 gas if done 

from a contract; if done from a transaction the 21,000 gas base cost). 

The gas costs were computed by taking as a goal a cost of ≈ 200 gas per byte in 

storage, estimating the number of bytes added to storage space by each 

particular type of storage-filling operation, multiplying the two values, and then 

adding an additional term to take into account other costs such as computation 

and contribution to history size. 

However, both the Bitcoin and Ethereum approaches have four large problems 

that lead to very suboptimal outcomes: 

• Storage is far too cheap in an absolute sense. For example, it costs 68 gas 

to force current users of the Ethereum network to download and process 

a byte, but 200 gas is enough to force all present and future users to do 

the same (and store the data forever) 

• The social cost of storage is far more linear, especially in the short and 

medium run, than computation, bandwidth and disk IO. If the storage 

normally increases by 1 MB per day, but in one month it increases by 100 

kB per day most days except for the last day when it suddenly increases by 

27 MB, the extra volatility in storage growth does not really hurt anyone. 

• There is insufficient incentive to clear storage. In the extreme case, 

depending on fee rates 10-60% of the UTXOs in Bitcoin’s state [31] have a 

value sufficiently low that it costs more money to clear them than is 

contained in the UTXOs. Most Ethereum contracts that get created do not 

get destroyed, and many do not have any effective “storage hygiene”. 

• There is no incentive to clear storage earlier rather than later. Even if 

storage clearing refunds exist, at present they are not time-based. 

The first problem can possibly be solved by simply making storage more 

expensive. However, making storage more expensive and doing nothing else 
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would make it prohibitively expensive to use storage for very short periods of 

time. One could offer a time-based refund, refunding more if a storage slot is 

cleared earlier rather than later; the only arbitrage-free scheme for this is to 

define some decreasing nonnegative function F(t) (eg. F(t) = h ∗ e−kt) of the 

current time, and charge F(t) for filling a storage slot at time t, and refund F(t) for 

clearing a storage slot at time t. 7  However, this approach is very capital-

inefficient, requiring large deposits to use storage, and additionally rests on the 

assumption that the social cost of storage will continue to forever decrease 

quickly enough that the integral is convergent. 

A solution that does not have these problems is to implement a time-based storage 

maintenance fee (sometimes also called “rent”). The simplest way to implement 

this is simple: every account object is charged X coins per block per byte that it 

consumes in the state. If an account has less coins than the amount needed to pay 
for pokeThreshold blocks (say, pokeThreshold = 500), then anyone can “poke” the 

account and delete it from storage, and claim k ∗ pokeThreshold blocks’ worth of 

rent as a bounty where k ∈ (0,1]. Implementing the above is impractical as every 

block going through every account and decrementing its balance has immense 
overhead. However, this can be computed quite practically through lazy evaluation: 

• All accounts store an additional data field, LastBlockAccessed 

• An account’s current balance can be computed as 

balance−perBlockFee∗sizeOf(account)∗(curBlock−LastBlockAccessed) 

• An account can be poked if this value goes below perBlockFee ∗ 

sizeOf(account) ∗ pokeThreshold 

• When an account’s state is modified, its balance is updated based on the 
above formula, and LastBlockAccessed is set to the current block number 

                                                     
7 If different storage slots can have different F(t) functions, then at any point where F1

0(t) > 

F2
0(t), there is an arbitrage opportunity where if the holder of F1 (the slower-falling function) no 

longer needs their storage slot, they can instead assign permission to use it to the holder of the 

other storage slot, and the holder of the other storage slot can clear it immediately. 
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Suppose that we want the maintenance fee to be able to vary over time. Then, for 

all block heights h we save in storage totalFee[h] = Ph
i=1 Fee[i] = totalFee[h − 1] + 

Fee[h]. We compute the current balance as 

balance−sizeOf(account)∗(totalFee[curBlock]−totalFee[LastBlockAccessed]) 

, where totalFee[curBlock] − totalFee[LastBlockAccessed] can be understood as 

PcurBlocki=LastBlockAccessed Fee[i]. 

However, we will argue in favor of simply setting the maintenance fee to one 

specific value (eg. 10−7 ETH per byte per year), and leaving it this way forever. 

First of all, the social cost of storage use is clearly almost perfectly linear in the 

short and medium run, but it is also much more linear in the long run. There is 

no analog to the natural asymptote of bandwidth and computation costs in 

blockchains where at some point the uncle rate reaches 100%; even if the storage 

of the Ethereum blockchain starts increasing by 10 GB per day, then blockchain 

nodes will be quickly relegated to only running on data centers, but the 

blockchain will still fundamentally be functional. In fact, if you assume that node 

storage capacity is distributed among the same distribution as the Cornell study 

[6] shows bandwidth is, so NodeCount(W) = W
1 , and assume the logarithmic 

utility function for node count, so D(x) = log(x) = −log(W) then the social cost 

component from node centralization is roughly C(W) = log(W), or C0(W) = W
1 - 

very steeply sublinear. 

Second, the developer and user experience considerably improves if developers 

and users can determine with exactness a minimum “time to live” for any given 

contract far ahead in advance. Variable fees do not have this property; a fixed 

fee does. Third, as cryptocurrency prices are more stable than transaction fees, 

a fixed fee improves price predictability, in both cryptocurrency and fiat-

denominated terms. Fourth, a fixed fee is simple, both intuitively and in the semi-

formal sense of having low Kolmogorov complexity. 

Commented [b15]: Grammar edit: 
“…one specific value (eg. 10−7 ETH per byte per year) 
and leaving it this way forever.” 



27 

9 Storage Pricing and User Experience 

For a simple cryptocurrency, the harm from one particular UTXO or account 

being deleted because its balance was completely drained paying storage 

maintenance fees is very simple to understand, and there are no complex 

interaction effects between different accounts or UTXOs that could result. For a 

more complex smart contract blockchain, rent does introduce more 

complexities, as there will be contracts that are very valuable for reasons other 

than the ETH (or other protocol-level base currency) contained in them, such as 

their function as software libraries, user-defined assets (ERC20, ERC721, etc) that 

they hold, active relationships with other smart contracts, etc. Hence, there is 

larger risk of an application suddenly becoming unusable because someone 

forgot to pay a maintenance fee. 

Such situations can generally be detected far ahead of time, but if this happens, 

then there is a second backstop that can be added to mitigate the effect of 

deletions arising from negligent failure to pay maintenance fees: a 

hibernation/waking scheme. Accounts that run out of funds to pay their 

maintenance fees do get removed from the state, but they are not deleted; 

rather, they are hibernated. For any hibernated contract, anyone can submit 

Merkle proofs that prove two claims: 

1. A given hibernated contract exists. 

2. That particular instance of hibernation was not already used to wake the 

contract. 

Condition (2) is needed to prevent a double-waking attack, where a contract is 

hibernated once, and then the proof of its hibernation is used to wake the old 

contract twice: 

 

If the contract contains more funds at the time of the older hibernation that it 

does at the time of the newer hibernation, then such an attack could be used to 

create funds out of nowhere. The second kind of proof could be done as follows. 
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Define MinInterval as the minimum length of time a storage slot can be used for 

(eg. 1 week): 

• Add a condition to the fee payment logic: when a contract is woken, it must 

be filled with at least (MinInterval + pokeThreshold) ∗ sizeOf(contract) ∗ 

feePerBlock ether. A contract also cannot withdraw so much that its 

remaining balance after the withdrawal falls below this threshold. 

• A proof of non-prior-waking consists of a Merkle branch pointing to the 

contract’s address once every MinInterval 

Adjusting MinInterval is a tradeoff: smaller values enable launching contracts 

cheaply for shorter periods of time, but larger values shrink the size of the 

witness required for waking, as well as shrinking the number of ever-growing 

historical state roots that need to be stored. For a MinInterval of one week, and 

a state with 230 accounts, waking a ten year old contract would require 

500,000 bytes; a minInterval 

of one month reduces this to 115,200 bytes. 

10 Conclusion 

Economic analysis can be used to significantly improve the incentive alignment 

of resource usage inside of public blockchains. Simplistic models of 

onedimensional weight limits often lead to prices that are highly mismatched 

relative to social costs, and slightly more complex techniques involving a 

combination of “Pigovian taxes” and cap-and-trade mechanics such as weight 

limits can improve significantly on the status quo. Storage in particular is a very 

different resource market from other types of resource markets, and should be 

treated separately. 

More economic analysis and econometric research can be used to help identify 

further mechanisms that can be used to better reduce costs while discouraging 

wasteful use of public blockchain resources. 

Acknowledgements. [fill me in.] 
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Appendix 

A The Full Ethereum Gas Function 

[Put the full gas function here.] 


