A zk-evm specification

Olivier Bégassat, Alexandre Belling, Théodore Chapuis-Chkaiban, Franklin Delehelle,
Blazej Kolad, Nicolas Liochon

October 2022

Contents

0.1 Purpose e e e e e e e 6
0.2 Context and results L L 6
0.3 Conventions i e e e 6
0.4 Organization o e e e 7
0.5 Suggestions for reading this document oL o oo 9
1 Hub 11
1.1 Colummns L e e e e 11
1.1.1 Conventions o v o it s e e e e e e 11

1.1.2 Column descriptions L L e 12

1.2 Stack . . . o o e e e 14
1.2.1 Heartbeat e 14

1.2.2 Counter constancy vttt e e e 14

1.2.3 Height range e 15
1.2.4 Zeropadding e e 15

1.2.5 Stack exceptions 15

1.2.6 Call stack depth exception, 16

1.3 Stack patterns L. L e 16
1.3.1 Purpose o o e e e e e e 16

1.3.2 Expected outcome oL e e 17

1.3.3 Empty stack item 19

1.3.4 Stack exception pattern L 19

1.4 One line instruction stack patterns 19
1.4.1 Disclaimer L o e e e e 19

1.4.2 (0,0)-patterno e e e 19
1.4.3 (0,1) and (1,0) patterns 20
1.4.4 (1,1) and (2,0) patternso o e e 21
1.4.5 (2,1) and (3,1) patterns e 23
1.4.6 DUP_X-pattern o o i i e e e e e e e 24
1.4.7 SWAP_X-pattern oL e e e 25
1.4.8 RETURN/REVERT patterno e 26

1.4.9 Copy pattern L e e 27

1.5 Two line instruction stack patterns patterns 29
1.5.1 Disclaimer o L o e e e e e 29

1.5.2 LOG_X pattern. o o e e e 29
1.5.3 Call pattern o L e 31

1.5.4 Create pattern L 33

1.6 Constraints o oo e e e e e e e e 34
1.6.1 Stack consistency 34

1.6.2 Program counter, PUSHes and JUMPS) v vt v v v i i v o oo 36
1.6.3 Miscellaneous flags Lo 37

1.6.4 Gas . . . v o 38

1.7 Workflow 0 o e e e 40
1.7.1 Module selectors e e e e e e e 40
MMU 43
2.1 Column descriptions i e e e e e e e e e e 43
2.2 Offset preprocessing o i i i e e e e e e e e e 45
2.2.1 Absolute and relative offsets Lo 45
2.2.2 RAM constancy e e 46
2.2.3 Columns established during precomputation 46
2.2.4 Binary, ternary, nibble and byte columns o000 47
2.2.5 Heartbeat e 47
2.2.6 Byte decomposition constraints Lo oL 49
2.2.7 Data organization oL L 49
2.3 Combinatorics of overlapping intervals oo 0oL 52
2.3.1 Purpose e e e e 52
2.3.2 Data e 52
2.4 Constraints L e e e e e 55
2.4.1 Parametrized instruction decoding, preprocessing and constraints 55
2.4.2 Setting the FAST flag e 56
243 Type 1. . o o o e 56
244 Type 2. . o e e e e e 59
245 Type 3. . o e 63
246 Typed. . ..o 65
247 Typedwhen TERN =0 o o oo 67
248 Typedwhen TERN =1 o o o o 68
249 Typedwhen TERN =2 o 74
2.4.70 Type b . o v o o e e e e e e e e 76
MMIO 80
3.1 Outline of the RAM arithmetization, 80
3.1.1 RAM instructions L e e 80
3.1.2 Column descriptions 80
3.2 Specialized constraints Lo 84
3.2.1 Binary constraints L e 84
3.2.2 Binary plateau constraints L Lo L o e 84
3.2.3 Power constraints L Lo 85
3.2.4 Byte decomposition constraints oo 86
3.2.5 Suffix extraction e e e e e e 86
3.2.6 Prefix extraction L L e 86
3.2.7 Chunk extraction L e 87
3.3 Module consraints Lo e e e e 87
3.3.1 Heartbeat e 87
3.3.2 Byte decomposition constraintso 88
3.3.3 Bytehood constraints. Lo L 88
3.3.4 Counter constancy vt i e e e e e e e 88
3.4 Limb transplants oL e 89
3.4.1 Purpose e e e e e e e e e e e e 89
342 RAMto RAM e 90
3.4.3 Exodatato RAM e 91
3.4.4 Exodataand RAM agree e 91
3.4.5 Killing RAM slots o o 91

34.6 RAMtostack. e 92

3.4.7 Stack to RAM e 93
3.4.8 Transaction call datato RAM o 93
3.5 Surgical patternso e 96
3.50.1 Purpose e e e e 96
3.5.2 Single byte swap e e 96
3.0.3 Excisiono 97
354 [L=1Padded] vt 98
355 [2=1Padded] . . .ot e e 99
35.6 [IFull = 2] e 100
35.7 (2= 1Full] 102
3.5.8 [lPartial = 1]. oo 102
3.5.9 [1Partial = 2].t e e 104
3.5.10 [2Full = 3] . . o v o o e 105
3511 [B=2Full]. ot e 106
3.6 Limb surgery L e e 107
3.6.1 Data sources and targets L Lo e 107
3.6.2 Which opcodes require what surgeries00, 108
3.6.3 RAM to RAM e 110
3.6.4 Exogenous data to RAM 111
3.6.5 RAM toexogenous data e 112
3.6.6 Stack to RAM e 114
3.6.7 RAM to stack: aligned offsets o oo 114
3.6.8 RAM to stack: non-aligned offsets 115
3.7 Consistency constraints e 122
3.7.1 Call stack consistency L e 122
3.7.2 Concatenated columns and order L oL 123
3.7.3 Memory consistency constraints L L oL oo 124
ROM 126
4.1 The ROM module e e e e e e 126
4.1.1 Introduction L 126
4.1.2 ROM specific terms L e 126
4.1.3 Trace columns Lo e e 127
4.1.4 Constraints Lo e e e 129
4.1.5 Constraints related to PUSH instructions, 136
4.1.6 Contract Address comparisons oo e 137
Out of bounds 139
5.1 Columns o o e e e e e e e e e e e e e e e 139
5. 1.1 Purpose e e e 139
5.1.2 Column descriptions e 139
5.2 Heartbeat o . e 140
5.3 Constraints L e e e e 141
5.3.1 Bytehood, byte decompositions, binary and ternary checks 141
5.3.2 CALLDATALOAD specific instructions 141
5.3.3 RETURNDATACOPY specific instructions 142
5.3.4 JUMP / JUMPI specific instructions 143
5.3.5 RETURN specific instructions 0 i v i v it it e e 143

6 Memory expansion 145

6.1 Memory expansion module Lo Lo 145
6.1.1 Introduction e 145
6.1.2 Columns e e e e e e e e e e 146
6.1.3 Offset bounds e e e 148

6.2 General constraints oL oL L e 149
6.2.1 Heartbeat e 149
6.2.2 Counter CONStanCy« v v v v v v e e e e e e e e e e e e 150
6.2.3 ROOB flag e 150
6.2.4 NOOP flag e 151
6.2.5 Byte decompositions Lo 152

6.3 Specialized constraints L 152
6.3.1 Standing hypothesis e 152
6.3.2 Max offsets e 153
6.3.3 Offsets are out of bounds L 153
6.3.4 Offsetsareinbounds. e 154

6.4 Consistency constraints oL L e 155

7 Gas 157

7.1 Purposeo e e e e e e e e e e 157
7.1.1 Purposeo L e e e e 157
T.1.2 0 Trig@ers . . o v o o e e e e e e e e e e e e e e e e e 157

7.2 Columns o oo e e e e 157
7.2.1 Column descriptions 157

7.3 Constraints L e e e e e e e e e e e e e 158
7.3.1 Heartbeat L 158
7.3.2 Constancy constraints oL oL e 160
7.3.3 Byte decompositions L e e 160
7.3.4 The LARGE_BYTE_DECOMPOSITION_FLAG 160
7.3.5 Target constraintso 161

8 Storage 163

8.1 Storage module L 163
8.1.1 Storage instructions 163
8.1.2 Column descriptions L e 163

8.2 Comstraints oL e e 165
8.2.1 Heartbeat e 165
8.2.2 Prewarmed storage keys Lo 165
8.2.3 Imstruction related constraints e 166

8.3 Comsistencyo e e e 168
8.3.1 Batch level consistency L e 168
8.3.2 Transaction level consistency o e 170
8.3.3 Gasconstraints e 171

9 Word comparison 175

9.1 Word comparison module e e e 175
9.1.1 Introduction e e e e e e e 175
9.1.2 Columns e e e e e e e e e e 175

9.2 Constraints e e e e e e e e e e e e e 176
9.2.1 Heartbeat e 176
9.2.2 Counter constancy constraints L oo 176
9.2.3 Byte decompositions, bytehood and binaryness 176

9.2.4 OLl constraints v 0 e e e 176

9.2.5 Target constraints L e 177

9.2.6 Result constraints e 177

10 Binary 178
10.1 Constraint set for the Binary module. 178
10.1.1 Binary Instructions L L L 178

10.1.2 Columns e e 178

10.1.3 Lookup tables and Plookup constraints 181

10.1.4 Technical constraints e 182

10.1.5 Shift-instruction constraints L e e 193

10.1.6 Pivot-instruction constraints e 195

11 ALU 198
11.1 ALU Dispatcher e e e e e e e e 198
11.1.1 ALU DISPATCHER e e e e e e e e e 198

11.2 ALU 264 o e 224
11.2.1 ALU256 o o e e e e e e e 224

11.3 ALU 64 . . . o o e e e e e e e e 235
11.3.1 ALUGA . . . o e e e e e e e e e e e 235

12 EXP dynamic gas 237
12.1 Exponent module L. e e e e e e 237
12.1.1 Introduction e e e e e e e e 237

12.1.2 Columns o o e e e e e e e e e e e 237

12.2 General constraints 238
1221 The DOBD flag o o o e 238

12.2.2 Heartbeat e e e e e 238

12.2.3 Byte decompositiono L e 238

12.2.4 Target constraints L L L e 238

12.2.5 PLATEAU_BIT constraints 239

12.2.6 (SIZE) constraints e e 239

13 Address Shaving 240
13.1 Address shaving moduleo 240
13.1.1 Introduction e 240

13.1.2 Columns e e e e 240

13.2 Constraints e e e e e e e 241
13.2.1 Heartbeat e e e e e e e e 241

13.2.2 PBIT contraints 241

13.2.3 Byte decomposition oL o 241

13.2.4 Target constraints o L e e e 241

Introduction

0.1 Purpose

The present document is a revised and expanded version of a previous (partial) specification of a
zk-evm.

0.2 Context and results

Rollups are a family of powerful scaling technologies which promise to considerably increase the ca-
pacity of the Ethereum Blockchain. An introduction to Rollups, zk-EVMs and their role in improving

Ethereum capacity can be respectively found in [I, 2]. Multiple attempts at building scalable and
practical rollup solutions have been positively received. zkSync [3], for instance, transpiles Yul into
a zk-VM friendly bytecode. Cairo [1], on the other hand, uses a custom architecture adapted to an

efficient STARK prover for smart contracts written in Cairo . Other projects, such as Hermez [5] or
Scroll Tech [6] and this project aim to interpret native EVM bytecode, without transpilation or further
compilation steps.

0.3 Conventions

Throughout the document we use a number of notational conventions which we explain here. These
conventions apply to column names and are meant to clarify the origin and purpose of certain columns
within a given trace. Others should be viewed as constructors which define new columns from existing
ones.

Module stamps. Module stamps count calls to a given module; most modules have a single stamp
though the hub and ALU have several. Stamp columns are adorned with a (O, thus the STOO is
the module stamp of the storage module. Module stamps are typically computed/updated in the hub
module whose main purpose is to dispatch (paid for an otherwise valid) instructions to the module(s)
that are equipped to carry them out. Associating a unique identifier (i.e. stamp) to such “module-
calls” is crucial when the order of operations matters. This is the case for instructions pertaining to
(address) warmth (i.e. the WRM module), required gas computations (i.e. GAS), RAM (i.e. MMU
and RAM), the stack (i.e. HUB), storage (i.e. STO), ... to cite a few. Stateless modules such as the
modules handling arithmetic (i.e. the ALU module), binary (i.e. BIN) or word comparison (i.e. WCP)
opcodes don’t require a time stamp per se yet are given one nonetheless.

Imported columns. Angular parentheses (- --) signal columns whose contents are imported from
other modules by means of a lookup argument. By way of example: all modules' import their module
stamp from the hub. Modules tasked with executing certain opcodes will typically import values from

Lwhich are connected to the hub

https://ethresear.ch/t/a-zk-evm-specification/11549
https://ethresear.ch/t/a-zk-evm-specification/11549

the stack (e.g. pairs of stack values (,VAL™), (,VAL'"), for various k € {1,2,3,4}.) Many modules
also imports values that aren’t borrowed from the stack. E.g. the hub module imports the instruction
(INST) from the ROM, e.g. the GAS module imports the current, new and endowment gas values
(GAS”™, GAS” and GAS* respectively) from the hub, e.g. the OOB module imports execution context
dependent data such exception flags, the size of return data (RDS), the size of call data (CDS) or the
code size (CODESIZE).

Decoded columns. A particular case of the above arises with decoded columns. Those are
columns whose contents are extracted from a hardcoded collection of columns using a lookup argument.
They are adorned with a lozenge as in °coL. By way of example: the hub contains various instruction
decoded flag columns but also a OSTACK_PATTERN column whose contents are deduced from an
immutable reference table called the instruction decoder. Similarly the binary module imports the
results of binary operations performed on pairs of bytes (and injects the relevant one into the result.)

Flag columns. Among the instruction decoded columns on finds various binary flags columns (e.g.
ALUIE, “MMU I, PEXP I, ...). These serve several purposes. The first is to provide an indica-
tion as to when modules may be sollicited by the hub to carry out an instruction. Thus arithmetic
instructions raise the ®ALU |, instructions that involve the RAM raise the “MMU [P etc ... Other
flags trigger particular behaviours. For instance the PUSH = and the JUMP I3 trigger the expected
behaviour of the program counter in the hub.

Module selector columns. When an instruction raises an instruction flag the associated module
may get triggered. The actual trigger is usually deduced form this flag and exception flags. Such
columns are tagged with a ¥ symbol

Interleaved columns. Certain arguments require us to merge columns of the same size into a single
column. We use H to signify the formation of such interleaved columns. E.g. starting with columns
A, B and C of size n we may form the column X := AHBH C defined as having length 3n and values

X340 = A;
X3.i+1 = B;
X3.i42 = C;

Row permutations. Our arithmetization requires row permutation arguments. These usually take
the following form: we are given a small family of reference columns REF, ..., REF, of equal size n
(which we view as the columuns of a n x p reference matrix REF). We are further given the description
of an essentially unique permutation of the set {0,1,...,n — 1} of rows indices, e.g. “(the essentially
unique) row permutation of the matrix REF under which its rows appear lexicographically sorted”. We
then write AUX; — [AUXj]x: for the mapping which takes an arbitrary column of the same size and
applies the aforementioned row permutation to its rows.

0.4 Organization

The zk-evm follows a modular archicture. Modules are given three letter identifiers. The modules are
the following:

1. ALU: ALU module; deals with opcodes performing arithmetic operations; see chapter ?7;

2. BIN: binary module; deals with opcodes performing binary operations; see chapter ?7;

Comparison

—>

—

N

Logs data J J

Tx

CALLDATA

l

ROM

ALU6G4
N
ALU256
N
’7 Storage ALU Binary
— Block info i T
. HUB
Hash info <————
Log info ¢ T |
MMU
Hash data el_ T
MMIO <—

X

EXPGAS

Address shaving

Gasometer

Memory expansion

Warmth computer |
Address checker

0OoB checker

—> PLookup inclusion
Internal state
Transaction state

Blockchain state

Figure 1: Modular architecture of the zk-evm. Boxes represent modules and arrows represent (plookup)
inclusion proofs. If an arrow points from module ABC to module XYZ then XYZ imports a portion of
its data from ABC. Arrows may be bidirectional which signals a “bilateral” inclusion proof.

10.
11.

12.

13.

WCP: word comparison module; deals with opcodes performing integer comparisons; see chap-
ter 9;

MXP: computes memory expansion costs; may raise a flag if offsets are wildly out of bounds; see
chapter 6;

. GAS: module which performs gas checks at crucial points in time; performs the (63/64)-ths

computations for CALLs and CREATESs; computes associated gas endowments; see chapter ??gas;

ROM: contains the bytecodes which are run and or (temporarily) deployed in a batch of trans-
actions; see chapter 4;

HUB: module containing the stack and call stack; dispatches instructions to other modules; see
chapter 1;

MMU: first stop in the life time of an opcode execution which touches RAM; performs arithmetic
on offsets and various sizes to cut down execution of a single opcode into a sequence of smaller
queries; see chapter 2;

RAM: contains the RAM of all execution context and can communicate with other data sources
such as ROM and other data stores; carries out the sequence of small queries commissioned by
the MMU; see chapter 3;

OOB: performs certain range checks required by instructions; see chapter 5;

STO: storage module; unique among all modules other than the hub in that it computes its own
gas costs; see chapter 8;

ACC: address existence module; loads and udpates account data from the state; WIP;

WRM: address warmth module: loads prewarmed addresses; handles address warmth in general,;
built on similar principles as the storage module; see chapter ?7;

The following are a few very small modules that either perform a very specific task or are used for
reference for the prover

1.

3.
4.

KEC: two simple modules: an INFO-module which extracts informations for whenever Keccak is
executed in the zk-evm (i.e. paid for executions of SHA3 and CREATE2) such as the size in bytes
of the data to hash”; the second module serves as a data store to which to extract the message
to hash;

. LOG: same idea for logs; the information module extracts the log parameter (€ {09, 1,2,3,4}),

logger address and size in bytes; the second module serves as a data store for the log message;
EXP: computes the dynamic gas cost of the EXP instruction; see chapter ?7;

SHV: shaves the leading 12 bytes off addresses; see chapter 13;

0.5 Suggestions for reading this document

We suggest the reader start with the chapter on the hub 1. The hub is the center piece of our zk-
evimm design. It reads instructions from the ROM 4 and dispatches instructions to other modules.
Various smaller modules which are directly connected to the hub (e.g. the word comparison module9
or out of bounds module 5) may prove helpful to develop some intuition for the techniques used
elsewhere. After the hub, the main module of interest is certainly the RAM. In our design the RAM

2The price, which depends on the number of EVM words rather than the number of bytes, is computed in the MXP

is split into 2 pieces: the memory management unit 2 (or offset processor) and the memory mapped
input output module??. The mmu receives instructions from the hub and is tasked with breaking
them down into smaller “elementary” operations. This reduction is a two phase process: the first
phase (“precomputation” or “establishing” phase) extracts auxiliary data from the arguments of the
opcode (offset and size parameters). The second “micro-instruction writing” phase uses these numerical
parameters to build a sequence of micro-instructions (surgeries and transplants) which the mmio
imports and carries out.

The reader should be warned: this document is a work in progress: typos — even outright mistakes
— are to be expected. One module (the address existence module) is presently missing from the
spec — it is a work in progress. Some sections have received more attention than others. The hub 1,
the memory-mapped-input-output module?? are among them as are various other “smaller” modules
such as the binary module, the word comparison module and others.

10

Chapter 1

Hub

1.1 Columns

1.1.1 Conventions

Throughout the document we use a number of notational conventions which we explain here. These
conventions apply to column names and are meant to clarify the origin and purpose of certain columns
within a given trace. Others should be viewed as constructors which define new columns from existing
ones.

Module stamps. Module stamps count calls to a given module; most modules have a single stamp
though the hub and ALU have several. Stamp columns are adorned with a O, thus the STOO is
the module stamp of the storage module. Module stamps are typically computed/updated in the hub
module whose main purpose is to dispatch (paid for an otherwise valid) instructions to the module(s)
that are equipped to carry them out. Associating a unique identifier (i.e. stamp) to such “module-
calls” is crucial when the order of operations matters. This is the case for instructions pertaining to
(address) warmth (i.e. the WRM module), required gas computations (i.e. GAS), RAM (i.e. MMU
and RAM), the stack (i.e. HUB), storage (i.e. STO), ... to cite a few. Stateless modules such as the
modules handling arithmetic (i.e. the ALU module), binary (i.e. BIN) or word comparison (i.e. WCP)
opcodes don’t require a time stamp per se yet are given one nonetheless.

Imported columns. Angular parentheses (- --) signal columns whose contents are imported from
other modules by means of a lookup argument. By way of example: all modules' import their module
stamp from the hub. Modules tasked with executing certain opcodes will typically import values from
the stack (e.g. pairs of stack values (,VAL™), (,VAL"), for various k € {1,2,3,4}.) Many modules
also imports values that aren’t borrowed from the stack. E.g. the hub module imports the instruction
(INST) from the ROM, e.g. the GAS module imports the current, new and endowment gas values
(GAS”, GAS” and GAS® respectively) from the hub, e.g. the OOB module imports execution context
dependent data such exception flags, the size of return data (RDS), the size of call data (CDS) or the
code size (CODESIZE).

Decoded columns. A particular case of the above arises with decoded columns. Those are
columns whose contents are extracted from a hardcoded collection of columns using a lookup argument.
They are adorned with a lozenge as in ocoL. By way of example: the hub contains various instruction
decoded flag columns but also a OSTACK_PATTERN column whose contents are deduced from an

Iwhich are connected to the hub

11

immutable reference table called the instruction decoder. Similarly the binary module imports the
results of binary operations performed on pairs of bytes (and injects the relevant one into the result.)

Flag columns. Among the instruction decoded columns on finds various binary flags columns (e.g.
ALUIE, “MMU I, PEXP I, ...). These serve several purposes. The first is to provide an indica-
tion as to when modules may be sollicited by the hub to carry out an instruction. Thus arithmetic
instructions raise the ®ALU I3, instructions that involve the RAM raise the “MMU I etc ... Other
flags trigger particular behaviours. For instance the PUSH ™ and the JUMP I3 trigger the expected
behaviour of the program counter in the hub.

Module selector columns. When an instruction raises an instruction flag the associated module
may get triggered. The actual trigger is usually deduced form this flag and exception flags. Such
columns are tagged with a ¥ symbol

Interleaved columns. Certain arguments require us to merge columns of the same size into a single
column. We use H to signify the formation of such interleaved columns. E.g. starting with columns
A, B and C of size n we may form the column X := AHBH C defined as having length 3n and values

X3it0 = A
X3.i+1 = B;
X3.it2 = C;

Row permutations. Our arithmetization requires row permutation arguments. These usually take
the following form: we are given a small family of reference columns REF, ..., REF, of equal size n
(which we view as the columns of a n x p reference matrix REF). We are further given the description
of an essentially unique permutation of the set {0,1,...,n — 1} of rows indices, e.g. “(the essentially
unique) row permutation of the matrix REF under which its rows appear lexicographically sorted”. We
then write AUX; — [AUXj]xz for the mapping which takes an arbitrary column of the same size and
applies the aforementioned row permutation to its rows.

1.1.2 Column descriptions

1. INSTRUCTION_STAMP: instruction stamp column; abbreviated to INSTJ; the first instruction
takes place at INSTO = 1; increases by 1 with every instruction;

2. STACK_STAMP: stack stamp column; abbreviated to abbreviated to STACKL; the first operation
touching the batch’s first transaction’s root context’s stack has HSTACK = 1; increases by one
every time the stack is popped, peeked at or an item is pushed onto the stack;

How many stack items an instruction touches depends on the instruction itself; consecutive values
of “STACK may jump by any value in the range {0,1,2,3,4,5,6,7,8}; the precise amount by which it
jumps is decided by the stack pattern which the instruction follows.

3. HEIGHT: contains the current height of the current execution context’s stack; the height is in
the range {0,1,...,1024} with HEIGHT = 0 signifiying an empty stack;

4. HEIGHTY: contains the height of the current execution context’s stack after dealing with the
current instruction;

5. (INST): instruction loaded from the ROM;

6. (INSTRUCTION_ARGUMENT)" (INSTRUCTION_ARGUMENT)'": instruction argument (for PUSH_X

instructions) loaded from the ROM; abbreviated to (ARG)" and (ARG)'" respectively;

12

7. STATG: instruction decoded static gas cost of instruction;

8. “INST_PARAMETER: instruction parameter obtained from instruction decoding (INST); abbre-
viated to YPARAM;

9. “TWO_LINE_INSTRUCTION: instruction decoded binary flag indicating whether an instruction
requires one or two rows in the execution trace; abbreviated to <>TLI;

10. COUNTER: binary counter column; abbreviated to CT;

For one line instructions (i.e. OTLI, = 0) we have CT; = 0; for two line instructions (i.e. OTLI, = 1)
counter will count from 0 to 1 (i.e. CT; =0 and CT;;; = 0 if we enter the instruction at row).

11. <>STACK_PATTERN: instruction decoded “stack pattern” column; defines the pattern according
to which stack values are touched or left empty; abbreviated to OpPAT

12. OFLAGI, OFLAGQ, <>FL/—\G?’: three isntruction decoded binary flag columns;

For instance the “PARAM associated with DUPX, X € {1,2,...,16}, is X — 1 while the CPARAM as-
sociated with SWAPX, X € {1,2,...,16}, is X. In our model, a stack item is fully determined by 6
parameters: the context number CONTEXT_NUMBER (i.e. CN) and 5 other parameters which we
describe below, though the stack items of a given row all share the same CN. We say that a stack item
was touched by an instruction if it was either peeked at, popped or pushed onto stack. Every
row of the present module touches up to 4 stack items. An instruction whose (instruction decoded)
<>TWO_LINE_INSTRUCTION flag equals 0 can touch, in one way or another, up to 4 stack items;
instructions whose (instruction decoded) OTWO_LINE_INSTRUCTION flag equals 1 can touch, in one
way or another, up to 8 stack items spread over 2 consecutive rows of the execution trace. Among the
instructions raising the <>TWO_LINE_INSTRUCTION one finds all variations on CALL, the LOGO-L0G4
instructions but also CREATE and CREATE2. The former is nonnegotiable as these instructions pop 6 or
7 items from stack and push a “success bit” onto it (which amounts to 7 or 8 touched stack items).
The L0OGO, LOG1, LOG2 instuctions touch (pop) 2, 3 and 4 stack items respectively while LOG3, L0OG4
touch (pop) 5 and 6 stack items respectively. The CREATE and CREATE2 instructions touch 4 and 5
stack items respectively. For simpler constraints we have chosen a uniform approach to all logs where
the first row of the intruction touches (pops) the offset and size parameters and the next row touches
(pops) the topics (if any). Similarly, the two creation instructions are dealt with uniformly.

The next 20 (!) columns contain information about the stack items an instruction touches. These
20 columns are comprised of 4 batches (parametrized by k = 1,2, 3,4) of 5 columns.

13. LHEIGHT: column containing the height € {1,...,1024}” of the k-th touched stack item;
14. kVALhi: column containing the
15. kVAL'°: column containing the

16. POP: binary column; ,POP = 1 indicates that the item at height ,HEIGHT was popped;
rPOP = 0 indicates that the item at height ,HEIGHT was peeked at or pushed;

17. I:I,CSTACK: stack stamp;

The stack stamp columns will be used in the stack consistency constraints to impose a total order on
the accesses to a given stack height of a given execution context. The pop flag will oscilate like so: 0
(i.e. push), 1 (i.e. pop), 0,1,....

18. STACK_EXCEPTION: binary column; lights up precisely when an instruction raises a stack
exception; depending on the instruction this is either a stack overflow or a stack underflow (or
both in the case of DUP_X instructions); abbreviated to STX;

?Note the range difference between the HEIGHT columns and the HEIGHT column.

13

19. STACK_UNDERFLOW_EXCEPTION: binary column; lights up precisely when an executing the
current instruction would produce a stack underflow exception; abbreviated to SUX;

20. STACK_OVERFLOW_EXCEPTION: binary column; lights up precisely when an executing the
current instruction would produce a stack overflow exception; abbreviated to SOX;

21. HEIGHT_UNDER: used purely for detecting stack underflows; takes values in the range {0, 1,...,1024};
abbreviated to HU;

22. HEIGHT_OVER: used purely for detecting stack overflows; takes values in the range {0, 1, ...,1024};
abbreviated to HO;

1.2 Stack

1.2.1 Heartbeat

This section describes the hearbeat of the stack module. It is imposed by two factors: the in-
struction decoded binary column <>TWO_LINE_INSTRUCTION and the INSTRUCTION_STAMP. The
COUNTER column either stagnates at 0 if OTLI; = 0 or counts from 0 to 1 if ®TLI; = 1. There are one
or more padding rows at the beginning.

1. INSTOy = 0;
2. INSTO is nondecreasing in the following sense: Vi, INSTO; 1 € {INSTO;, 1 4+ INSTO, };
3. 1F INSTO; = 0 THEN °TLI; = 0;

4. 1F QTLIZ» =0 THEN (CTZ-H =0 anDp CT; = 0);

5. 17 INSTO; # 0 THEN IF OTLI, = 1:
(a) 1r CT; # 1 THEN
INSTO; 1 = INSTO;
(INST);41 = (INST);
CTi+1 =1 + CTZ

Note that in that case <>TLI1-+1 = OTLIi as well. Actually

DECODED_COLUMN,; = °“DECODED_COLUMN;

for any instruction decoded column.

(b) 1r CT; =1 THEN (CTiH =0 AND INSTO;py =1+ INSTDi).

1.2.2 Counter constancy

We say that a column X is counter-constant if it satisfies
CTz 75 0 = X;=X;_1

Note (INST) is counter-constant by construction, see section 7.3.1. It follows that all instruction
decoded flags are counter-constant. The following columns are counter-constant:

14

1. HEIGHT 2. HEIGHT” 3. HU 4. HO

1.2.3 Height range
We ask that the HEIGHT column satisfy the bound

HEIGHT;
HEIGHTY
HU;
HO;

Vi, €{0,1,...,1024}.

We test this by means of a Cairo-style small-range range-proof. Note that our arithmetization requires
no further range check on the (HEIGHT, k£ = 1,2, 3,4, columns. The above constraint is sufficient to
enforce that:

o if the k-th stack item is nonempty then ,HEIGHT € {1,...,1024};

o if the k-th stack item is mostly empty or empty then HEIGHT = 0.

1.2.4 Zero padding

Beyond the heartbeat constraints and range constraints that take effect with the first row of the
execution trace, all constraints detailed below apply under the assumption that

In our implementation the execution trace of this module, like that of any other module, is padded
with at least one row of zeros so that its length may hit a power of 2. In our implementation we include
the following extra constraint for every column X of the module

I INSTO; =0 THEN X; =0

1.2.5 Stack exceptions

Before the stack excavates any items it must first check whether doing so would cause an exception,
i.e. a stack overflow or a stack underflow. The present section takes care of this check. It uses the
HEIGHT column and instruction decoded evmn parameters (d,,,) which occupy the ODELTA and
OALPHA columns respectively. and

1. We first check for stack underflows:
HU; = (2-SUX; — 1) - (ODELTA,- — HEIGHT;) — SUX;
2. 1r SUX; =1 THEN SOX; =0 (i.e. if a stack underflow occurred we set the overflow flag to 0.)
3. 1F SUX; = 0 THEN we check for overflows:
HO; = (2-SOX; — 1) - (HU; + ®ALPHA; — 1024) — SOX;
Note that SUX; = 0 implies HU; = HEIGHT; — DELTA,.
4. STX; = SUX; + SOX;.

By construction one cannot have both a stack overflow and an underflow at the same time. The
preceding thus computes the binary flag SUX; v SOX; = SUX; + SOX; — SUX; - SOX; = SUX; + SOX;.

15

1.2.6 Call stack depth exception
We provide the constraints for the CSDX flag.
1. CSDX is binary”

2. we impose a range constraint

CSD; + “CALLI®; + °CREATEIS; — 1025 - CSDX; € {0,1,...,1024}.

1.3 Stack patterns

1.3.1 Purpose

The present section explores stack patterns and sheds some light as to which instructions use what
stack patterns. What we call a stack pattern is the pattern according to which the stack items
touched by an individual instruction are laid out across the 4 to 8 stack items which are available to
the instruction. Full details are given in section 1.4 on “one line stack patterns” and section 1.5 on
“two line stack patterns”.

The Ethereum Yellow Paper defines for every instruction w a pair of nonnegative integers (0., y)
where J,, is the number of stack items w pops off the stack and «,, is the number of stack items
w pushes onto the stack®. Similarly, every instruction has a corresponding zk-evm specific pair of
nonnegative integers (625, aZ) which, to some extent, determine the instruction’s stack pattern. The
pairs (0,) and (62, aZ%) don’t necessarily coincide (though they mostly do.) For instance, the

zk
following inequalities always hold:

6% c{0,1,...,7}, a*c{0,1,2} and &*+a*c{0,1,...,8}

The most notable divergence between these parameter families comes from DUP_X and SWAP_X instruc-
tions, X € {1,...,16}. The Ethereum Yellow Paper ascribes them, respectively, the pairs (dpyp_x, apup_x) =
(X, X+ 1) and (dsyap_x, asuar_x) = (X + 1,X + 1). The stack pattern our arithmetization uses bears no
dependence on X, as implicitly the zk-evm has:

(551};?_)(7 aIZ)gP_X) =(1,2) and (5§§AP_X’ aégAP_x) =(2,2).

In other words the zk-evm views DUP_X instructions (that don’t raise a stack underflow or overflow
exception) as the popping of one stack item (at height HEIGHT; — (X — 1)) and two pushes (at height
HEIGHT; — (X — 1) and HEIGHT; + 1 respectively)’. Similarly, the zk-evm views SWAP_X instructions
(that don’t raise a stack underflow exception) as the popping of two stack items (at height HEIGHT; — X
and HEIGHT;) and two pushes (at height HEIGHT; — X and HEIGHT; respectively)®. Note that the
parameter to substract from the current height” is read off the instruction decoded column OPARAM.

The inequality 0 < §2F + o2 < 8 and our choice to excavate up to 4 stack items per row of the exe-
cution trace allow our stack to deal with every instruction in one or two rows. The instruction decoded
binary column <>TWO_LINE_INSTRUCTION records precisely this hardcoded distinction. Most of the
time instructions w with §2F + o2* < 4 have OTLI = 0 though there are exceptions: CREATE and the
three log instructions LOGO, LOG1 and LOG2 are counter-examples to this. We have chosen to deal with,
on the one hand, CREATE and CREATE2, and on the other hand, the LOGX instructions, X € {0,...,4},
in unified ways.

3and counter-constant by construction

4More precisely: d, € {0,1,...,7,8,...,17} is the number of stack items w pops off of the current execution context’s
stack given that doing so doesn’t raise a stack underflow exception, and a. € {0,1,2,3,...,17} is the number of stack
items w pushes onto the current execution context’s stack given that doing so doesn’t raise a stack overflow exception.

5The value that was popped is pushed at both heights.

6The popped values are interchanged in the pushes.

7X — 1 for DUP_X, X for SWAP_X

16

If °TLI = 0 and 6% 4+ o < 4 fewer than 4 stack items are touched. Similarly, if OTLI = 1 and
d%% + o < 8) fewer than 8 stack items are touched. In either case we need to also impose constraints
on the “phantom stack items”. The consistency checks described in section 1.3.3 ignore such rows.

A slight complication arises from the CODECOPY instruction. This is an instruction with (625, aZ) :=
(6w,) = (3,0) and TLI = 0. The stack pattern of this instruction is what one would expect from
an instruction following the copyPattern. Except that its fourth stack item is only mostly empty.
We exploit the absence of constraints that caracterizes stack items of any execution environment at
HEIGHT = 0 (as well as any height of the 0*" execution environment.) This allows us to introduce the
current context’s BC_ADDR into the ,VAL" / ,VAL' fields without disturbance to stack consistency.
The RETURN instruction, which is a (625, a%%) := (0, @) = (2,0) and *TLI = 0 instruction, comes with
a similar complication. If the current execution context isn’t a deployment context (i.e. CTYPE = 0)
then its fourth stack item is empty. If the current execution context is a deployment context (i.e.
CTYPE = 1) its fourth stack item is mostly empty. As before we plug the current context’s BC_ADDR
into the ,VAL" / ,VAL" fields and keep all other fields of the fourth stack item empty (i.e. = 0.) Again,
this is without consequence for stack consistency constraints.

Here is an example: say the instruction pops 6% = 2 items and adds o = 1 items and *TLI = 0
(i.e. it’s a “one line instruction”) This stack pattern applies to most arithmetic operations, most word
comparison operations and most binary operations which have two inputs and one output. Note that
OTLI = 0 and 6% + o™ = 3 < 4 so there is one “phantom stack item” (the third one). The associated
stack pattern will impose values to all 4 stack items that the present line “excavates” like in figure 77

(INST) | OTLI; [| HEIGHT | HEIGHT” | STACKO | STACKY [| ,ITEM [,ITEM | ,ITEM | ,ITEM
BLA 0 h h—1 st st+3
LTEM LI TEM
(HEIGHT [,VAL" | \VAL" | ,POP [JSTACK | [,HEIGHT | ,VAL" | ,vAL"™ | ,POP | JSTACK
h—0 o v 1 st+ 1 h—1 vl vy° 1 st+ 2
3ITEM JTEM
SHEIGHT | VAL™ [;VAL™ | ;POP | GSTACK | | (HEIGHT | ,VAL™ | ,VAL" | ,POP | JSTACK

h—1 ol vl° 0 st+3

Figure 1.1: The values in this font represent hardcoded values associated with this particular stack
pattern. The values in are also hardcoded values but we reserve this font for empty stack
items. Note that we consistently write () to mean 0 when a field of a particular stack item is zero
because the stack item is empty, see section 1.3.3.

1.3.2 Expected outcome

Designing stack patterns is straightforward for instructions pertaining to the binary module, the word
comparison module, the arithmetic module and the storage module: the relevant instructions are
relatively uniform in the number of arguments they retrieve from stack. There is more diversity for
instructions touching the RAM and the call stack. Of the instructions directly touching RAM (or
transaction call data) we want to achieve the following data pattern for instructions with OTLI = 0
While for instructions touching RAM that require two lines (i.e. OTLI = 1): We also list the expected
stack patterns for instructions that induce changes in the call stack:

17

’ INST \ Item 1 \ Item 2 \ Ttem 3 \ Item 4 ‘

CALLDATALOAD offset loaded
MLOAD offset loaded
MSTORE offset toStore
MSTORES offset toStore
SLOAD storage key loaded
SSTORE storage key toStore
CALLDATACOPY offset (rel.) srcOffset | size

CODECOPY offset srcOffset size | (address)
EXTCODECOPY offset srcOffset size address
RETURNDATACOPY offset (rel.) srcOffset | size

SHA3 | offset | | size [hash |
RETURN offset size | (address)
REVERT offset size

Figure 1.2: Expected stack patterns for 1 line instructions touching the RAM module. We have already
alluded to the special case of CODECOPY and its mostly empty fourth stack item. The property of being
mostly empty (i.e. only containing address := BYTECODE_ADDRESS) is signaled by parentheses.
We also signaled the same mostly empty fourth stack item issue with RETURN instructions ran in a
deployment context. The interpretation of address := BYTECODE_ADDRESS is analoguous in this
case, but now depends on the binary flag CTYPE.

’ INST \ Item 1 \ Item 2 \ Item 3 \ Item 4 \ CcT ‘
LOGO offset size 0
1
LOG1 offset size 0
topicl 1
L0G2 offset size 0
topicl | topic2 1
LOG3 offset size 0
topicl | topic2 | topic3 1
L0G4 offset size 0
topicl | topic2 | topic3 topic4 1
CREATE | offset size | address (or 0) | 0
value 1
CREATE2 | offset salt size | address (or 0) | O
value 1

Figure 1.3: Expected stack pattern for instructions with OTWO_LINE_INSTRUCTION = 1 touching
the RAM module.

18

’ INST \ Ttem 1 \ Ttem 2 \ Item 3 \ Item 4 \ CcT

CALL offset R@O size R@C 0
gas address | value | success 1
CALLCODE offset R@O size R@C 0
gas address | value | success 1
DELEGATECALL | offset R@O size R@C 0
gas address success 1
STATICCALL offset R@O size R@C 0
gas address success 1

Figure 1.4: Expected stack pattern for instructions with OTWO_LINE_INSTRUCTION = 1 that don’t
touch the RAM module.

1.3.3 Empty stack item
Let k € {1,2,3,4}. We define the following ”empty k-th stack item” constraint system:
+HEIGHT, =0
xPOP; =0
(EmptyStackItem <— kVALh'z' =0
WVAL"; =0
QSTACK; =0

1.3.4 Stack exception pattern
We lay out the constraints and stack pattern associated to stack exceptions.
1. 1r STX; =1 THEN
Stack Item n°1: The first stack item is empty: ;EmptyStackItem
Stack Item n°2: The second item is empty: EmptyStackItem;
Stack Item n°3: The third item is empty: ;EmptyStackItem;
Stack Item n°4: The fourth stack item is empty: ,EmptyStackItem;

Stack stamp update: STACKO; = STACKL;;
Height update: HEIGHT; = 0;

1.4 One line instruction stack patterns

1.4.1 Disclaimer

‘The stack patterns presented in the current section 1.4 apply if and only if STX; = 0. ‘

1.4.2 (0,0)-pattern

Supported instructions. The 0_0_Pattern corresponds to evm instructions w with (§2%, o) :=
(0w, ayy) = (0,0), i.e.

19

1. STOP; 3. JUMPDEST;

2. INVALID; 4. any byte that isn’t an opcode.

Relevant instruction decoded columns. Among all instruction decoded columns we focus on the
following flags:

INST PAT TLI
(0,0)-instructions || 0_0_Pattern 0

Constraints. We collect under the 0_0_Pattern moniker the following collection of constraints:
Stack Item n°1: The first stack item is empty: ;EmptyStackItem;
Stack Item n°2: The second stack item is empty: ,EmptyStackItem;
Stack Item n°3: The third stack item is empty: ;EmptyStackItem;

Stack Item n°4: The fourth stack item is empty: ,EmptyStackItem; ,EmptyStackItem, ;EmptyStackItem
and ,EmptyStackItem,

Stack stamp update: STACKOY; = STACKL,,
Height update: HEIGHT”; = HEIGHT,,

1.4.3 (0,1) and (1,0) patterns

Supported instructions. The instructions listed below are precisely the instructions with OPAT =
oneltemPattern. The oneltemPattern corresponds to evm instructions w with (d,, ay) € {(1,0), (0,1)},
i.e. (1,0)-instructions. For such instructions (0%,02%) := (8,) and TLI = 0. The (1,0)-
instructions are:

1. POP 2. JumMp 3. SELFDESTRUCT

and (0, 1)-instructions:

1. ADDRESS 8. RETURNDATASIZE 15. SELFBALANCE
2. ORIGIN 9. COINBASE 16. BASEFEE

3. CALLER 10. TIMESTAMP 17. PC

4. CALLVALUE 11. NUMBER 18. MSIZE

5. CALLDATASIZE 12. DIFFICULTY 19. GAS

6. CODESIZE 13. GASLIMIT 20. PUSH1-PUSH32
7. GASPRICE 14. CHAINID

Relevant instruction decoded columns. Among all instruction decoded columns we focus on the
following flags:

INST OPAT OTLI || “FLAG!
(0,1)-instructions || oneltemPattern 0 0
(1,0)-instructions || oneItemPattern 0 1

Graphical representation. We figures below represent the oneItemPattern stack pattern:

20

Stack | Stack | Stack | Stack Stack | Stack | Stack | Stack
Item 1 | Item 2 | Item 3 | Item 4 Item 1 | Item 2 | Item 3 | Item 4
<HEIGHT; h+1 +HEIGHT; h
LVAL"/, VAL™ res LVAL"/ VAL™ top
POP; 0 POP; 1
JSTACK; st+1 USTACK; st 4 1

Figure 1.5: The left hand side represents the stack patttern for (0, 1)-instructions (i.e. “FLAG! = 0),

the right hand side represents the stack patttern for (1,0)-instructions (i.e. “FLAG! = 1) We write
h = HEIGHT,; and STACKO, = st.

Constraints. We collect under the oneItemPattern moniker the following collection of constraints.

They apply whenever
STX; =0

Stack Item n° 1: The first stack item is contains a stack item iff <>FLAG1 =1

(HEIGHT;, = HEIGHT; - °FLAG',
POP; — “FLAG!,
OSTACK, = (STACKD, + 1) - “FLAG!.

Stack Item n°2: The second item is empty: ,EmptyStackItem;

Stack Item n°3: The third item is empty: ;EmptyStackItem;

Stack Item n°4: The fourth stack item is contains a stack item iff <>FL/—\G1 =0

JHEIGHT, = (HEIGHT; +1) - (1 — “FLAGY),
LPOP, = 0,
OSTACK; = (STACKD, +1)- (1 — “FLAGY).

Stack stamp update: STACKY; = STACKO; + 1;
Height update: HEIGHT”; = HEIGHT, + (1 —2- <>FLAGl);

1.4.4 (1,1) and (2,0) patterns

Supported instructions. The stack pattern described below applies to the following instructions
(1,1)-instructions:

« ISZERO « BLOCKHASH
* NOT « CALLDATALOAD
« BALANCE

« EXTCODESIZE * MLOAD

«+ EXTCODEHASH + SLOAD

21

and to the following (2, 0)-instructions:

¢ MSTORE e SSTORE

« MSTORES ¢ JUMPI

Relevant instruction decoded columns. Among all instruction decoded columns we focus on the
following:

INST OpAT OTLI || "FLAG!
(1,1) instructions || twoltemPattern 0 0
(2,0) instructions || twoltemPattern 0 1

Graphical representation. The picture is the following, for instance for MLOAD (<>FLAG1 =0) and
usTORE (FLAG! = 1)

Stack | Stack | Stack | Stack Stack | Stack | Stack | Stack
Item 1 | Item 2 | Item 3 | Item 4 Ttem 1 | Item 2 | Item 3 | Item 4
LHEIGHT; h h LHEIGHT; h h—1
LVAL"/, VAL" | ARG1 ouT LVALY/ VAL" | ARG1 ARG2
POP; 1 0 POP; 1 1
JSTACK; st4 1 st+2 USTACK; st+ 1 st + 2

Figure 1.6: On the left hand side is the picture for a (1,1) instruction (i.e. “FLAG! = 0). On the

right hand side is the picture for a (2,0) instruction (i.e. “FLAG! = 1). We write h = HEIGHT,; and
STACK; = st.

Constraints. We collect under the twoItemPattern moniker the following collection of constraints:

Stack Item n° 1: depending on the instruction contains either a relative offset, an absolute
offset or a storage key:

(HEIGHT; = HEIGHT;,
POP; = 1,
USTACK, = STACKO; + 1.

Stack Item n°2: is empty: ,EmptyStackItem;
Stack Item n°3: is empty: ;EmptyStackItem;

Stack Item n°4: depending on the instruction, contains the value being loaded or being stored:

LHEIGHT, = HEIGHT; — FLAG"
POP, = “FLAG!
OSTACK, = STACKO; + 2.

Stack stamp update: STACKO"; = STACKO; + 2,
Height update: HEIGHT”; = HEIGHT; — 2 - OFLAGI,

For this set of instructions the interpretation of <>FLAG1 is that it equals 1 for storing instructions and
0 for loading instructions.

22

1.4.5 (2,1) and (3,1) patterns

Supported instructions. The stack pattern described below applies to the following (62, «
(6w, y) = (2,1) instructions:

w) =

e ADD e« MOD o GT « OR e SAR
e MUL e SMOD e SLT « XOR e SHA3
« SUB e EXP e SGT e BYTE

e DIV e SIGNEXTEND e EQ e SHL

e« SDIV o LT e AND e SHR

zk

aswell as to the following (§2%, a2

) = (0w,) = (3,1) instructions:
e ADDMOD e MULMOD

Note that we don’t include CREATE (which would have the correct signature ... maybe we should 7)
The purpose of the “FLAG is to differentiate between those instructions with 2 inputs (<>FLAG1 =0)
and those instructions with 3 inputs (OFLAG1 =1.)

Graphical representation. The picture is the following:

Stack | Stack | Stack | Stack Stack | Stack | Stack | Stack
Ttem 1 | Item 2 | Item 3 | Item 4 Item 1 | Item 2 | Item 3 | Item 4
wHEIGHT; h h—1] h—1 wHEIGHT; hl] h—2] h—1] h—2
LVAL"/,VAL" | ARG1 ARG2 | OUT LVALM/ VAL | ARGl | ARG3| ARG2| OUT
,POP; 1 1 0 +POP; 1 1 1 0
JSTACK; st+ 1 st+2| st+3 JSTACK; st+1] st+2| st+3][st+4

Figure 1.7: Representation of the standardPattern for “FLAG! = 0 (left) and “FLAG! =1 (right.) On
the left hand side standard instructions with 2 arguments, on the right hand side standard instructions
with 3 arguments. We chose to put the second instruction argument in the third stack item because

of the SHA3 instruction that, following expectations, expects to find its size parameter in the 3rd stack
item. We write h = HEIGHT,; and STACK[J; = st.

Constraints. We collect under the 2_1_Pattern moniker the following collection of constraints:

Stack Item n° 1: contains the first instruction argument:

(HEIGHT; = HEIGHT;,
POP; = 1,
USTACK; = STACKO; + 1.

Stack Item n°2: contains the second instruction argument:

JHEIGHT;, = (HEIGHT; — 2) - “FLAGY,,
,POP, = C°FLAGY,
OSTACK, = (STACKD, +2) - “FLAGY,

23

Stack Item n° 3:

JHEIGHT, = HEIGHT, — 1,
JPOP, = 1,
OSTACK, = STACKD, + 2+ FLAGL,.

Stack Item n°4: contains the output of the instruction

(HEIGHT; = HEIGHT; — 1 - “FLAG!,,
LPOP; = 0,
OSTACK; = STACKD, + 3 + CFLAG!.

Stack stamp update: STACK; — STACK; + 3 + CFLAG?;:

Height update: HEIGHTY; = HEIGHT,; — 1 — <>FLAGli;

1.4.6 DUP_X-pattern

Supported instructions. The dupPattern is used by DUP_X, X € {1,2,...,16}, instructions.

Relevant instruction decoded columns. Among all instruction decoded columns we only require
the INST_PARAMETER column:

INST PAT TLI PARAM
DUP_X || dupPattern 0 X—-1

Graphical representation. The figure below represents the dupPattern stack pattern:

Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4
+HEIGHT; h — YPARAM h — YPARAM h+1
LVAL"/, VAL" v v v
POP; 1 0 0
JSTACK; st 4 1 st+2 | st+3

Figure 1.8: The stack pattern for DUP_X instructions. We write h = HEIGHT; and st = STACKOJ;.

Constraints. We collect under the dupPattern moniker the following collection of constraints:

1. First stack item:
1HEIGHT,; = HEIGHT,; — <>PARAMI»7

POP; =1,
HSTACK; = STACKO; + 1.

2. Second stack item: ,EmptyStackItem.

3. Third stack item:
sHEIGHT; = HEIGHT; — <>PARAMi7

4POP; =0,

SVAL", = VAL";

JVAL'"; = VAL'";
OSTACK; = STACKO; + 2.

24

4. Fourth stack item:
4HEIGHT; = HEIGHT; + 1,
,POP; =0,
JVALM, = VALM;
JVAL"; = VAL'",
DSTACK; = STACK; + 3.
5. STACKOY; = STACK; + 3,

6. HEIGHTY; = HEIGHT; + 1,

1.4.7 SWAP_X-pattern

Supported instructions. The swapPattern is used by SWAP_X, X € {1,2,...,16}, instructions.

Relevant instruction decoded columns. Among all instruction decoded columns we only require
the <>INST_P/—\RAI\/I ETER column:

INST PAT oTLI PARAM
SWAP_X || swapPattern 0 X

Graphical representation. The figure below represents the swapPattern stack pattern:

Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4
+HEIGHT; h — YPARAM h | h— YPARAM h
LVAL™/ VAL v v/ v/ v
+POP; 1 1 0 0
USTACK; st4+1 | st+2 st+3 | st+4

Figure 1.9: The stack pattern for DUP_X instructions. We write h = HEIGHT; and st = STACKL,.

Constraints. We collect under the swapPattern moniker the following collection of constraints:

1. First stack item:
\HEIGHT; = HEIGHT; — °PARAM;,
POP; =1,
JSTACK; = STACKO; + 1.

2. Second stack item:
oHEIGHT; = HEIGHT;,,

,POP; =1,
OSTACK; = STACKO; + 2.

3. Third stack item:
sHEIGHT; = HEIGHT,; — “PARAM,;,
4POP; =0,
SVALM, = VAL,
SVAL'"®; = ,VAL'";
OSTACK; = STACK; + 3.

25

4. Fourth stack item:
4HEIGHT; = HEIGHT;

,POP; =0,

JVALM, = VAL,

JVAL"; = VAL";
DSTACK; = STACKO; + 4.

5. STACKDOY; = STACKL; + 4,
6. HEIGHT"; = HEIGHT;,

1.4.8 RETURN/REVERT pattern

Supported instructions. The following stack pattern applies to
e RETURN

e REVERT

Relevant instruction decoded columns.

INST OPAT oTLl || ®FLAG! | cTYPE
RETURN || returnReversePattern 0 1 0
RETURN || returnReversePattern 0 1 1
REVERT || returnReversePattern 0 0 0/1

Graphical representation. The picture is the following

Stack | Stack | Stack Stack
Item 1 | Item 2 | Item 3 Item 4
+HEIGHT; h h—1
LVAL"/ VAL® | offset size | (BC_ADDR)
POP; 1 1
USTACK; st+ 1 st 4 2

Figure 1.10: The first stack item contains an offset in the current execution context’s RAM. The
second stack item is empty. The third stack item contains the size of the return data. The fourth stack
item is mostly empty. It contains the current BY TECODE_ADDRESS in case of a RETURN instruction
happening in a deployment context. Otherwise it is (). We write h = HEIGHT; and STACKO,; = st.

Constraints. We collect under the returnReversePattern moniker the following collection of con-
straints:

Stack Item n°1:

HEIGHT; = HEIGHT,,
POP; - 1,
USTACK, = STACKO, + 1.

Stack Item n°2: is left empty ,EmptyStackItem;;

26

Stack Item n° 3:
HEIGHT; = HEIGHT; —1,

POP; = 1,
USTACK; STACKO; + 2.

Stack Item n°4:

JHEIGHT, = 0,

VAL, BC_ADDR", . °FLAGY, - CTYPE;,
JVAL"; BC_ADDR'"; . “FLAG!; - CTYPE,,
,POP; = 0,

DSTACK;

Stack stamp update: STACKO; = STACKO; + 2;
Height update: HEIGHT"; = HEIGHT; — 2;

1.4.9 Copy pattern
Supported instructions. The following stack pattern applies to
« CODECOPY o CALLDATACOPY

« EXTCODECOPY o RETURNDATACOPY

Relevant instruction decoded columns. The following instruction decoded flags are used to fill
the stack pattern correctly for every instruction.

INST °paT | o1 || °FLAG! | PFLAG?
CODECOPY copyPattern 0 1 0
EXTCODECOPY copyPattern 0 1 1
CALLDATACOPY copyPattern | 0 0 0
RETURNDATACOPY || copyPattern 0 0 1

For CALLDATACOPY and RETURNDATACOPY (i.e. <>FLAG1 = 0) the fourth column is empty. For CODECOPY
(i.e. <>FLAG1 =1, <>FLAG2 = 0) the fourth stack item is mostly empty but we stick the current code

address into the value field. For EXTCODECOPY (i.e. “FLAG! = 1, “FLAG? = 1) the fourth stack item is
populated.

Graphical representation. For this set of instructions the interpretation of ¢ FLAG! is that it equals
1 for EXTCODECOPY only. The picture is the following:

Constraints. We collect under the copyPattern moniker the following collection of constraints:

Stack Item n°1: contains the destination offset:

HEIGHT; = HEIGHT; — “FLAG!, - °FLAGZ,,
USTACK, = STACKO; + 1.

27

Stack Stack Stack | Stack
Item 1 Item 2 Item 3 | Item 4
kHEIGHT; h h—1] h-2 CALLDATACOPY and
WVAL"™/, VAL™ | destOffset | (rel)offset size (RETURNDATACOPY)
POP; 1 1 1
USTACK; st+ 1 st+2 | st+3
Stack Stack Stack Stack
Ttem 1 Item 2 Item 3 Ttem 4
+HEIGHT; h h—1| h-2
WVAL"/, VAL™ | destOffset | (rel)offset size | BC_ADDR (CODECOPY)
POP; 1 1 1
JSTACK; st+1 st+2 | st+3
Stack Stack Stack | Stack
Item 1 Item 2 | Item 3 | Item 4
HEIGHT; h—1 h—2] h-3 h
_VAL™/ VAL® | destOffset | (rel)offset | _ size | ADDR (EXTCODECOPY)
POP; 1 1 1 1
USTACK; st+ 1 st+2 | st+3]| st+4

Figure 1.11: The first three items one pops from stack represent the offset where to start writing, the
(relative) offset of where to start reading and the size (i.e. number of bytes to read.) This is all there

is when FLAG' = 0. But for EXTCODECOPY (i.e. “FLAG! = FLAG? = 1) there is an extra stack

argument to pop: the address. For CODECOPY (i.e. <>FLAG1 =1 and <>FLAG2 = 0) the fourth stack
item is technically empty but we make it contain the current bytecode address. This will not perturb
consistency constraints as HEIGHT = 0. We write h = HEIGHT,; and STACK,; = st.

Stack Item n°2: contains the (naked) source offset:

JHEIGHT; = HEIGHT, — 1 — “FLAG!, - °FLAGZ,,
JPOP;, = 1,
OSTACK, = STACKO, +2.

Stack Item n°3: The third stack item contains the size:

JHEIGHT, = HEIGHT, — 2 — “FLAG!, - °FLAGZ,,
L,POP; - 1,
BSTACK;, = STACKO, + 3.

Stack Item n°4: The fourth stack item is empty for CALLDATACOPY and RETURNDATACOPY, mostly
empty for CODECOPY and non empty for EXTCODECOPY where it contains an address popped off

the stack:

1. , ,
JHEIGHT; = HEIGHT; - "FLAG'; - "FLAG?;
POP, = “FLAGY - OFLAG
OSTACK, = (STACKD, +4) - “FLAG!, - °FLAG,

28

2. 1F (OFLAGli =1 AND QFLAGQi = O) THEN

JVAL"; = BC_ADDR";
JVAL'", = BC_ADDR";

Stack stamp update: STACKY; — STACKD; + 3 + CFLAGY, - “FLAG?;,

Height update: HEIGHT”; = HEIGHT; — 3 — FLAG!; - “FLAG2,,

1.5 Two line instruction stack patterns patterns

1.5.1 Disclaimer

’The stack patterns presented in the current section 1.5 apply if and only if STX; = 0.

1.5.2 LOG_X pattern

Supported instructions. The following stack pattern applies to

« LOGO o LOG3
o LOG1 LOG4
o LOG2

Relevant instruction decoded columns. Among all instruction decoded columns we focus on the
following flags:

INST || °PaT | °ParRAM | oTLI || “FLAG! | “FLAG? | “FLAG?
LOGO || logPattern 0 1 0 0 0

LOG1 || logPattern 1
LOG2 || logPattern 2
LOG3 || logPattern 3
LOG4 || logPattern 4

== =] =
== o
= =l K]

=] = = =

Graphical representation. The picture is the following

(CT;=0) Stack | Stack | Stack | Stack
Item 1 | Item 2 | Item 3 | Item 4
xHEIGHT; h h—1
LVAL™/ VAL | offset size
POP; 1 1
USTACK; st+1 st + 2

Figure 1.12: This table represents the stack pattern of the first row (CT; = 0) of a log instruction. We
write h = HEIGHT,; and st = STACKO,.

29

(CT;=1) Stack | Stack | Stack | Stack (CT;=1) Stack | Stack | Stack | Stack
Item 1 | Item 2 | Item 3 | Item 4 Item 1 | Item 2 | Item 3 | Item 4
<HEIGHT; <HEIGHT; h—2 | h—3 | h—4
LVAL"/, VAL™ LVAL" /' VAL™ | topicl | topic2 | topic3
POP, .POP; 1 1 1
JSTACK; USTACK; st+3 | st+4 | st+5

Figure 1.13: This table represents the stack pattern of the second row (CT; = 1) of a LOGO and
a LOG3 instruction respectively. The other logs follow the same pattern. As previously we write
h = HEIGHT; = HEIGHT,_; and st = STACKO; = STACKO,_;.

Constraints. We collect under the moniker logPattern the following collection of constraints:
1. 17 CT; =0:

Stack Item n° 1: the first stack item of the first row contains the offset:

(HEIGHT, = HEIGHT;,
,POP; = 1,
USTACK, = STACKO; +1

Stack Item n°2: the fourth stack item of the first row is empty: ,EmptyStackItem;;

Stack Item n° 3: the third stack item of the first row contains the size:

,HEIGHT; = HEIGHT, —1,
,POP; = 1,
OSTACK;, = STACKO; +2

Stack Item n°4: the fourth stack item of the first row is empty: ,EmptyStackItem;;
Stack stamp update: STACKOY; = STACKO, + 2 + °PARAM;
Height update: HEIGHTY; = HEIGHT; — 2 — “PARAM;

2. 17 CT; =1:

Stack Item “n°5”: the first stack item of the second row may contain a first topic:

(HEIGHT; = (HEIGHT; — 2) - °FLAG!
POP, — °FLAG,
OSTACK;, = (STACKD, +3) - “FLAG!

Stack Item “n°6”: the second stack item of the second row may contain a second topic:

JHEIGHT, = (HEIGHT, —3) - (°FLAG® + (1 — °FLAG?) - °FLAG?),
LPOP, = PFLAG2+ (1 - °FLAG?) - PFLAG?,
USTACK;, = (STACKD, +4) - (“FLAG? + (1 — °FLAG?) - °FLAG?)

Stack Item “n°7”: the third stack item of the second row may contain a third topic:
sHEIGHT; = (HEIGHT; —4)- OFL/—\G2,

LPOP, = YFLAGY
OSTACK; (STACKLJ; + 5) - °FLAG?

30

Stack Item “n°8”: the fourth stack item of the second row may contain a fourth topic:

LHEIGHT, = (HEIGHT, — 5) - “FLAG? - “FLAG?,
POP; = °FLAG? - FLAGY,
OSTACK;, = (STACKD, +6) - “FLAG? - “FLAG?,

1.5.3 Call pattern

Supported instructions. The following stack pattern applies to all “call instructions” i.e. the
instructions below:

e CALL o DELEGATECALL

e CALLCODE e STATICCALL

Relevant instruction decoded columns. Among all instruction decoded columns we focus on the
following flags:

INST OPAT OTLI || "FLAG! | “FLAG?
CALL callPattern 1 1 0
CALLCODE callPattern 1 1 1
DELEGATECALL || callPattern 1 0 0
STATICCALL callPattern 1 0 1

The interpretation is the following: call instructions w with <>FLAG1 =1 have 6% = §,, = 7 and those
with FLAG! = 0 have 628 = §,, = 6 (and all call instructions have o2 = «,, = 1.) Though the

stack pattern does not depend on it, we recall here the interpretation of the second flag <>FL/—\GQ: it
differentiate between CALL and CALLCODE as well as between DELEGATECALL and STATICCALL.

Graphical representation. We represent the stack pattern when <>FLAG1 = 0 is in figure 77 and
similarly for <>FL/—\G1 = 0 see figure 77.

CT; =0 Stack | Stack | Stack | Stack CT; =1 Stack | Stack | Stack | Stack
Item 1 | Item 2 | Item 3 | Item 4 Item 1 | Item 2 | Item 3 | Item 4

<HEIGHT; h—2| h—4| h—-3| h-5 +HEIGHT; h h—1 h—5
LVAL"/, VAL® | CcDO| R@O| CDS| R@C LVAL"/, VAL" gas | address success
POP; 1 1 1 1 POP; 1 1 0
JSTACK; st+1| st+2| st+3| st+4 JSTACK; st+5| st+6 st 4 7

Figure 1.14: The above represents the stack patttern for <>FLAG1 = 0 (i.e. for DELEGATECALL and
STATICCALLCODE instructions). We write h = HEIGHT; and STACKO, = st.

Constraints. We collect under the moniker callPattern the following collection of constraints:
1. 1r CT; =0:

Stack Item n°1: the first stack item of the first row of the instruction:

(HEIGHT, = HEIGHT,; — 2 - “FLAGY,,
POP; = 1,
USTACK, = STACKO; + 1.

31

CT;, =0 Stack | Stack | Stack | Stack CT; =1 Stack | Stack | Stack | Stack
Item 1 | Item 2 | Item 3 | Item 4 Item 1 | Item 2 | Item 3 | Item 4

HEIGHT; h—3 h—5 h—4 h—6 tHEIGHT; h h—1 h—2 h—6
LVAL"/ VAL® | CcDO| R@O| CDS| ReC LVAL"/ VAL™ gas | address | value | success
.POP; 1 1 1 1 .POP; 1 1 1 0
JSTACK; st+1| st+2| st+3| st+4 USTACK; st+5| st+6| st+7| st+8

Figure 1.15: The above represents the stack patttern for <>FLAG1 =1 (i.e. for CALL and CALLCODE
instructions). Recall that CDO, R@O, CDS, ROC are short hand for CALLDATA_OFFSET, RE-
TURNGQOFFSET, CALLDATA_SIZE, RETURN@CAPACITY respectively. We write h = HEIGHT; and

STACK; = st.

Stack Item n°2: the second stack item of the first row of the instruction:

o HEIGHT; = HEIGHT; —4—<>FLAG11,
4,POP; = 1,
OSTACK, = STACKO; +2.

Stack Item n° 3: the third stack item of the first row of the instruction:
sHEIGHT; = HEIGHT, —3 — OFLAGli,
3POP; = 1,
OSTACK;, = STACKO, + 3.

Stack Item n°4: the fourth stack item of the first row of the instruction:
4HEIGHT; = HEIGHT,; —5— OFLAGIZ-,
USTACK, = STACKO; +4.

Stack stamp update: STACKO"; = STACKO,; + 7 + <>FLAGli;
Height update: HEIGHT"; = HEIGHT,; — 5 — OFLAGI;

2. 1r CT; =1:

Stack Item “n°5”: the first stack item of the second row of the instruction:
(HEIGHT, = HEIGHT,,
1POP; = 1,
HUSTACK, = STACKO; +5.
Stack Item “n° 6”: the second stack item of the second row of the instruction:
oHEIGHT; = HEIGHT,; —1,
OSTACK; = STACKDO; +6.
Stack Item “n° 7”: the third stack item of the second row of the instruction:
sHEIGHT; = (HEIGHT,; —2)- QFLAGIZ-,
,POP, = “FLAGY,
OSTACK;, = (STACKD; +7)- “FLAGY,.

32

Stack Item “n°8”: the fourth stack item of the second row of the instruction:

JHEIGHT, = HEIGHT; — 5 - °FLAG!,
LPOP, = 0,
OSTACK;, = STACKD; + 7+ “FLAGY,.

1.5.4 Create pattern

Supported instructions. The stack pattern we describe below applies to both creation instructions:

e CREATE o CREATE2

w
row of the execution trace (6254 a?* = 4) we have chosen a unified approach to both create instructions.

Although the CREATE instruction has (62,) = (,, auy) = (3,1) and would thus fit into a single

Relevant instruction decoded columns.
following flags:

Among all instruction decoded columns we focus on the

INST OpPAT OTLI || "FLAG!
CREATE createPattern 1 0
CREATE2 || createPattern 1 1

Graphical representation. We represent the stack pattern for CREATE instructions (i.e. <>FLAG1 =

0) in figure 77 and that for CREATE2 instructions (i.e. “FLAG! = 1) in figure 77.

CT;,=0 Stack | Stack | Stack Stack CT; =1 Stack | Stack | Stack | Stack
Item 1 | Item 2 | Item 3 Item 4 Item 1 | Item 2 | Item 3 | Item 4
<HEIGHT; h—1 h—2 h—2 +HEIGHT; h
WVAL"/ VAL" | offset size | address (or 0) LVAL"/ , VAL"™ value
JSTACK; st 4 1 st + 2 st + 3 JSTACK; st + 4
Figure 1.16: The above represents the stack patttern for <>FLAG1 = 0 (i.e. for CREATE instructions).
We write h = HEIGHT,; and STACKL; = st.
CT;,=0 Stack | Stack | Stack Stack CT; =1 Stack | Stack | Stack | Stack
Item 1 | Item 2 | Item 3 Item 4 Item 1 | Item 2 | Item 3 | Item 4
HEIGHT; h—1| h—=3| h-2 h—3 +HEIGHT; h
WVAL"/ VAL™ | offset salt size | address (or 0) LVAL"/, VAL™ value
+POP; 1 1 1 0 POP; 1
USTACK,; st+1| st+2]| st+3 st+4 USTACK; st+5

Figure 1.17: The above represents the stack patttern for <>FLAG1

We write h = HEIGHT,; and STACKL; = st.

33

=1 (i.e. for CREATE2 instructions).

Constraints. We collect under the moniker createPattern the following collection of constraints:
1. 17 CT; =0:

Stack Item n°1: the first stack item of the first row of the instruction:

(HEIGHT; = HEIGHT; — 1,
POP; = 1,
HSTACK; = STACKO; + 1.

Stack Item n°2: the second stack item of the first row of the instruction:

LHEIGHT; = (HEIGHT; — 3) - °FLAG!,
,POP, = °FLAGY,
OSTACK;, = (STACKO; +2) - “FLAGL,.

Stack Item n° 3: the third stack item of the first row of the instruction:

LJHEIGHT, = HEIGHT; — 2,
OSTACK; = STACKD + 2+ “FLAG!,.

Stack Item n°4: the fourth stack item of the first row of the instruction:

JHEIGHT, = HEIGHT, — 2 - “FLAGY,,
,POP; = 0,
OSTACK; = STACKD, + 3+ “FLAG,.

Stack stamp update: STACKOY; = STACKO; +4 + OFL/—\GI;
Height update: HEIGHT"; = HEIGHT; — 2 — <>FLAGl;
2. 17 CT; =1:
Stack Item “n°5”: the first stack item of the second row of the instruction is always empty:

1EmptyStackItem;

Stack Item “n°6”: the second stack item of the second row of the instruction is always empty:
oEmptyStackItem;

Stack Item “n°7”: the third stack item of the second row of the instruction satisfies:
sHEIGHT; = HEIGHT,,
3POP; 1,
OSTACK;, = STACKD + 4+ “FLAG!,.

Stack Item “n°8”: the fourth stack item of the second row of the instruction is always empty:
4EmptyStackItem;

1.6 Constraints

1.6.1 Stack consistency

This section describes the consistency constraints that ensure that any stack item excavated from the
stack of a given execution context at a given height coincides with the last stack item pushed onto the
same execution context’s stack at the same height. We introduce some interleaved columns:

34

d.
6.

. CN®* — CNBCNHECNECN
. 123sHEIGHT = |HEIGHT B ,HEIGHT B 4HEIGHT B ,HEIGHT

125aSTACK = JSTACK B85STACK B8 5STACK BBSTACK
123aPOP = ,POP 8 ,POP 8 ,POP B8 ,POP

o3 VALY = VAL B, VAL" B VAL B, VAL"

123 VAL = VAL B ,VAL" B ,VAL'" B ,VAL"

This contains some meaningless rows: the rows ¢ with CNE-E4 = 0 correspond to padding; the rows ¢

with ;,3,HEIGHT; = 0 correspond to empty stack items. Consider a row permutation X — [X]x: such

that

([CNBMTC) [1234HEIGHT]x:, {123D45TACKTQ)

are in lexicographically order.

1.

b'ed
IF ([CNHM} =0 OR [1g3,H EIGHT]??H = O) we don’t impose any consistency constraints;
it+1

bled
B4 b J—
2. IF ([CN LH £0 AND [1p3,HEIGHT]Z, # o) PHEN

(a) 1F
e x
CRUNSCT
i+1 i
AND
x x
[1234HE|GHTL‘+1 = [1234HEIGHT]i
THEN

. pled ped
i. [1234POPJ;] | + [1034POP]” =1,

ii. 1F [1234POP]ﬁ1 = 1 THEN

VALM = VALM
{1234 } i {1234 } ;
{ VAL '0} = [VAL '°}
1234 i 1234 ;

In other words, the binary flag column [1234POP]x: at a given height oscillates (we push, pop,

push, pop, push, etc...); when popping an item (i.e. when [1234POP]ﬁ1 = 1), we retrieve
the value previously pushed at that height;
(b)
{CNHM]"“ ” [CNBMT,Q
IF o oR ! THEN [1234POP}ﬁ1 =0
[1234HE|GHT]ﬁ1 # [1234HE|GHT]?

i.e. the first time we encounter a given (nonzero) height of a (nonzero) context it is to push
an item at that height (not to pop a nonexisting item).

35

1.6.2 Program counter, PUSHes and JUMPs)

The PC is updated both in the temporal execution trace and in a reordered execution trace (to resume
execution where it left off when executing a CREATE-type instruction or a CALL-type instruction.) The
constraints below detail the “extraordinary” or “unusual” updates to the program counter induced by
PUSH-type instructions and JUMP-type instructions. To this end we introduce a column PC” that stores
the expected new program counter. This expected new program counter isn’t necessarily the next value
of the program counter. Indeed exceptions® may impose an abrupt execution context switch.

‘ The constraints below are written under the assumption that CN; # 0. ‘

1. v ®PUSHIE, = 1 THEN
(a) Put the push argument on stack:
{ LVAL"; = (PUSH_VALUE"),
4VAL"; = (PUSH_VALUE"),
(b) We set the expected new program counter: PCY = PC; + 1+ CPUSH_PARAM,;.
2. 1F OJUMP]CUi =1 the following sets the expected new program counter:

(a) 17 (INST); = JUMPY THEN
i. We set the expected new program counter:
17 JOOB; =1 TuEN PC; = CODESIZE;
1w JOOB; = 0 Tiex PCY =, VAL";

ii. If the jump is carried out (and not thwarted by an exception) we check its validity, i.e.
IF CN;41 = CN; THEN

1IF (INST); 1 = JUMPDEST THEN JUMPX;;1 =0
IF (INST); 41 # JUMPDEST THEN JUMPX;;; =1

(b) 1 (INST); = JUMPI'’ THEN
i. We set the expected new program counter:

A 1r <4VALhii =0 AND 4VAL'°i = O) THEN PC; =1+ PC; (no jump is triggered);
B. 1F (4VALhi,» #0 ORr ,VAL"; # O) THEN

ir JOOB; =1 tueN PC; = CODESIZE;
1w JOOB; = 0 TieN PCY =, VAL";

furthermore, if the jump is carried out (and not thwarted by an exception) we check
its validity, i.e. 1F CN;y+; = CN; THEN

IF (INST); 11 = JUMPDEST THEN JUMPX;;1 =0
1F (INST); 11 # JUMPDEST THEN JUMPX;;; =1

Note that the JOOB flag is justified in the rare checks module.

8out0fGas or stackUnderflow for JUMP-type instructions, out0fGas or stackOverflow for PUSH-type instructions
9In implementation we should use “IF (INST); # JUMPI” instead.
10Similarly, use “1r (INST); # JUMP” instead.

36

3. Let us (and just this once) write UPCU = “PUSH I + “ JUMP I& where UPCU is shorthand for
“Unusual Program Counter Update”. Then we ask that

1IF UPCU; =0 tueN PCY =1+ PC;

We give some context as to the “PC; 1 = CODESIZE;” constraint. First, remark that the CODESIZE is
indeed available (it is a column in the call stack). Secondly, recall that in our padding of the bytecode
in the ROM module, we always append at least 32 zero bytes (0x00) after the end of the bytecode; in
case of an out of bounds jump the zk-evm jumps to PC = CODESIZE and the associated opcode will
be 0x00 (not a JUMPDEST.)

The correct retrieval of the context’s program counter the reentrance into the current context after
a CALL-type instruction or CREATE-type instruction is most easily expressed after reordering of the

execution trace. To that effect, consider a reordering of the columns X — [X]x such that
([CN]’“, [STACKD]’“) = lex. ordered

We drop the CN;41 # 0 assumption and replace it with:

The constraints below are written under the assumption that [CN]?‘Er1 # 0.

1. 17 [CNHl]x = [CN,»]x: THEN
PCiia [= [PCIT*
2. 18 [CNy 1 # [CN,T® rrex [PCoy® = 0.

Note: we could just as well express the constraints for jump and push instructions in the
standard time ordered version of the execution trace. This would be more economical
and their expression would be precisely the same, just without the ordered columns. The
(context, stamp) sorted version is useful for updating the program counter in a context
switch, i.e. some variation of CALL or CREATE.

1.6.3 Miscellaneous flags

The VALTF

We specify the VALTF column (short for VALUE_TRANSFER_FLAG). It is a binary flag which equals 1
iff the instruction is a CALL-type instruction which transfers value. Recall that for the callPattern the

third stack item on the second row contains the value argument (if any) of the CALL-type instruction.
With this in mind, VALTF is defined by

1. 1r °CALLI; = 0 THEN VALTF =0
2. 1 °CALLIE; = 1 TheN
(a) 17 3VAL'; 1 =0 TiEN VALTF; =0
(b) 1F 3VAL'; 1 # 0 THEN VALTF,; =1
The ACCOUNT_HAS_BALANCE_FLAG
We specify the ACCHB flag. Its specification is simple:
1 BALANCE; = 0 THEN ACCHB; =0
1 BALANCE; # 0 THEN ACCHB; =1

37

1.6.4 Gas

This section deals with the gas in the hub. Gas is a complex topic. Instructions come with a static gas
cost which is instruction decoded from (INST). Instructions may incur extra costs which are computed
as a combination of the following we enumerate here:

Arithmetic. The EXP opcode incurs a dynamic cost Gexpbyte - N Where n is 0 is the exponent e is 0,
and |logys(e)] otherwise. This dynamic gas cost is made available in the ALU_DYNAMIC_GAS
column (which is justified in the ALU module.)

Storage. SLOAD and SSTORE (especially) have complex pricing; the gas cost is computed in the storage
module and made available in the STOG column (it is justified in the storage module.)

Memory Expansion. The memory expansion cost is made available in the AMXC column (which is
justified in the memory expansion module.)

Linear cost. Certain instructions charge an extra fee that is linear in a size argument. Complexity
arises from the fact that these sizes may be measured in bytes or in EVM words. For the latter
case the Hub contains a SIZE_IN_EVM_WORDS column (which is justified in the memory
expansion module.)

CALL costs CALL-type instructions come with extra costs not found elsewhere:

Transfer cost. CALLs which transfer funds cost Gealvalue = 9000 more.

Address warmth. CALLs to warm addresses cost less; warmth of an address is justified in the

The first requirement which we impose is that gas columns ought to be counter constant

1. 1F CT,yq # 0 THEN
GASY,, = GASY
GAS!,, = GAS?
GAS!,, = GAS"
GASY,, = GAS!

As a consequence we impose gas to be computed once per instruction, precisely when CT; = 0. We
therefore impose that

The remainder of this section is written under the assumption CT; = 0.

The hub computes gas as follows. From the point of view of the hub, the initial gas is imported from
block data. It defines the first value of GAS” within a transaction. Every instruction induces gas
depletion as follows:

GAs” 1L, gas? 2L, gast —CL, gas”
Steps (1) and (2) could easily be combined into a single step (thus rendering the GAS” column obsolete.)
Every time a halting instruction is executed which doesn’t put an end to the transaction (but only

switches from the current context to its parent context) the descendant context receives a gas refund.
We thus impose the following constraints:

2. 17 TX#,; #0 AND TX#, = TX#,;, | THEN
GAS?, | = GASY,, + CHALT I, - (1 — GENERAL_EXCEPTION;) - GAS/

In other words: if the previously executed instruction was a halting operation and it didn’t
trigger an exception the “old gas” of the parent context receives a refund which is equal to the
descendant context’s remaining gas

HI.e. IF CTiJrl =1

38

The second step is about subtracting static and dynamic gas costs:

3. 1F TX#; # 0 THEN

GAS? = GAS? — YSTATG; (1.1)
— ©ALUT; - Gexphyte - EXPONENT_SIZE_IN_BYTES; (1.2)
— 9sTOI®; - STOG; (1.3)
o WARM; - (1 — ®SELFDESTRUCT_FLAG;) - Garmaccess
~ "WRM; +(1 — WARM;) - Geoldaccountaccess] (14)

— ®CALLI®; - VALTF; -
+Gcallvalue (b)

DEAD_FLAGZ : Gnewacoount (a)]

— “MXPIE; - AMXC; (1.6)
— “COPYI®; - Geopy - SEVMW; (1.7)
— “HASH_FLAG; - Greccak256word - SEVMW; (1.8)
— “LOGI; - Glogdata - 3VAL"; (1.9)
— “RETURNI®; - CTYPE; - Geodedeposit - 5VAL"; (1.10)
— 9SELFDESTRUCT_FLAG; - ACCHB; - Ghewaccount - sVAL'®; (1.11)

We provide some details. (1) accounts for static gas; static gas is justified against the instruction
decoder (as is evident from the ©) (2) accounts for the dynamic gas cost associated with exponenti-
ation; the EXPONENT_SIZE_IN_BYTES column is justified in the RAM module; it is zero unless
the instruction is EXP i.e. exponentiation mod 2%%%; (3) accounts for the dynamic gas cost of storage
instructions; the STOG column is justified in the storage module; (4) accounts for costs associated
with access costs of accounts; the WARM flag is justified in the warmth module; (5) accounts for ex-
traordinary costs associated with CALL-type instructions; there is (a) the cost associated with CALLing
upon a non existent account (b) the cost associated with a value transfer; (6) accounts for memory
expansion costs; the AMXC column is justified in the memory expansion module; (7) accounts for
“copy” instructions'? which encur a linear cost in the number of evm words copied; (8) accounts for
operations that hash a slice of memory'® and incur a linear cost in the number of evm words hashed:;
(9) accounts for the portion of log pricing that is linear in the number of bytes to log; (10) accounts for
code deployment costs: they are paid when encountering a RETURN instruction (i.e °RETURN I = 1)
in a deployment context (i.e. CTYPE; = 1.) Notations for gas constants (Gexpbyte €tc..) are taken
from the Ethereum Yellow Paper.

The next step in the gas computation is to compute the “new gas”. The main complication arises
with CALL-type and CREATE-type instructions. The Gas modules exists precisely to justify the gas
endowment in these cases:

4. 17 TX$#; #0 THEN
GAS! = GAS; — YCALLIS- GAS;
— OCREATEI®. GAS:

12§ e. RETURNDATACOPY, CALLDATACOPY, CODECOPY and EXTCODECOPY
13j.e. SHA3 and CREATE2

39

1.7 Workflow

1.7.1 Module selectors
Stamp counter-constancy constraints

Recall that a column X is counter-constant if CT; # 0 = X; = X;_1, see section 1.2.2. We impose
counter-constancy constraints on “module stamp” columns:

1. ACCO 6. KECO 11. SHVO
2. ALUO 7. LOGO 12. STOO
3. BINO 8. MMUO 13. WCPO
4. EXPO 9. MXPO 14. WRMO
5. GASO 10. O0OBO

These constraints matter for OTWO_L|NE_|NSTRUCT|ONS: a single instruction should be dis-
patched to the relevant modules. This is also the reason why in the following section we state all
constraints under the “CT,; = 0” hypothesis:

Throughout subsection 1.7.1 we systematically assume that CT,; = 0.

stackException sensitive selectors

The exponent module, the out of bounds module, and the storage module are triggered iff
(1) the stack raises no stackException and (2) the instruction raises the appropriate module flag. In
other words:

EXP¥, = (1-STX,) - “EXPI®;

O0B¥;, = (1—STX,;) - “00BI=;

STO%, = (1-STX,) - “STOI,

and the associated module stamps are updated accordingly:

EXPO, = EXPO,_; + EXP¥,
00BO; = 00BO;_; + OOBY,
STOO; = STOO;_; + STO¥,

The inclusion of the storage module in this list may seem surprising. One would expect the storage
module to only be triggered if both previously stated conditions hold and the instruction raises no out
of gas exception. However the storage module is unique among all “instruction executing modules'*”
(other than the hub itself) in that it computes its own gas cost. SSTORE pricing in particular is complex
and closely connected with the storage operation itself so we have chosen to do both at the same time
and in the same place. It should be added that this doesn’t introduce undesirable modifications to
storage: the storage module is self-reverting. Thus any storage operation carried out by the storage
module which induces an out of gas exception in the hub will be done (in storage) in such a way as to
revert itself.

14je. ALU, binary, mmu and ram, word comparison

40

stackException and callStackOverflowException sensitive selectors

The address shaving module, the memory expansion module and the warmth module are trig-
gered iff (1) the stack raises no stackException, (2) the instruction raises no callStackOverflowException,
and (3) the instruction raises the relevant module flag. In other words:

MXP¥, = (1—STX;)-(1—CSDX;)- *MXPI&;
SHVH, = (1—STX,)-(1—CSDX;) - °SHVIE,
WRM¥, = (1-STX,)- (1 —CSDX,;) - "WRMI,

and the associated module stamps are updated accordingly:

MXPO; = MXPO;,_; + MXP¥,
SHVO, SHVO,_; + SHV#¥,
WRMO; = WRMO;_; + WRM¥,

stackException and outOfGasException sensitive selectors

The ALU module, the binary module, the word comparison module and the hash info
module are triggered iff (1) the stack raises no stackException, (2) the instruction raises no
out0fGasException, and (3) the instruction raises the relevant module flag. In other words:

ALU¥%, = (1-STX;)- (1 —00GX;) - °ALUI®,
BIN¥, = (1-STX;)-(1—-00GX;)- “BINI,
KECH, = (1—STX;)-(1—00GX,;) - “KECI
WCP¥, = (1—STX;)- (1 —00GX;) - *WCPI=,

and the associated module stamps are updated accordingly:

ALUO; = ALUO,_; + ALU¥,
BINO, = BINO;_; + BIN¥,
KECO, KECO;,_1 + KECH;
WCPO; = WCPO,_, + WCP¥,

LOG module selector

The log-info module is triggered iff (1) the stack raises no stackException (2) the context isn’t
static (3) the instruction doesn’t lead to an outOfGasException (4) the instruction raises the “log
flag.” In other words:

LOGO; LOGO;_; + LOGY;

{ LOGY, = (1—STX,) (1 — CSTAT;)- (1 — 00GX;) - °LOG I,

Gas module selector

The gas module, triggers ¢ff (1) the stack raises no stackException, (2) the instruction raises
no callStackOverflowException and (3) the instruction is a CALL-type instruction, a CREATE-type
instruction, a halting instruction, the instruction raises an outOfGasException or the instruction
raises a generalException.

In other words if we write just this once

GENX;

+ “HALT I,
OCALLIm,

+ “CREATEI,

GAS_TRIGGER; = (1 — STX,) - (1 — CSDX;) -

41

We then set
{m GAS_TRIGGER,; # 0 T1EN GASH,; = 1

17 GAS_TRIGGER; = 0 THEN GAS¥; =0
GAS(O; = GAS(O;_; + GASH,
TODO: Note: we really only need the general exceptions flag GENX ... including OOGX is
done purely for mental comfort. Note furthermore that the gas module imports OOGX.
MMU module selector

The trigger for the MMU module is by far the most complex trigger. The conditions that trigger a
call to the MMU module are (1) the stack raises no stackException (2) the instruction doesn’t lead
to an outOfGasException (3) a host of instruction dependent conditions which we will describe after
giving the selector expression. Thus the MMU selector is defined by the constraint

- STD, 7 (1)
+ “REVERTIS; - [CSD #1], | (2)
o CTYPE; - [CSD = 1],
+ RETURN & - i (3)
+[CSD # 1],
MMU#; = (1 —STX;) - (1 - 00GX,)- | LGS, - (1 — CSTAT,))
(0) + °CDLIE; - (1 — CDL_OOB;) (5)
+ “RDCIE; - (1 — RDCX;) (6)
+ ®CREATEI; - (1 — CSDX;) - (1 — CSTAT;) (7)
| + YCALLI; - (1 — CSDX;) - (1 — CSTAT, - VALTF;) | (8)

where we have used the following short hands:
STD = “MMU I — ®RETURN 9 — “REVERT P — °CDLIF — *LOGI® — °CREATEI® — “CALL I

and [CSD = 1] =1- [CSD #* 1] is the binary flag defined by [CSD = 1]2. =1« (CSD; =1.
We provide some details: (0) filters out instructions that produce a stackException or an out0fGasException;

(1) STD is (by construction) a binary column; it lights up precisely for MLOAD, MSTORE, MSTORES, SHA3,
CODEDATACOPY, EXTCODEDATACOPY, CALLDATACOPY; thus any of these instructions which passes the
“stack and gas hurdle” makes it to the MMU; (2) filters out REVERTSs in the root context of a trans-
action; (3) does the same for RETURNs except if the root context is a deployment context (i.e. if the
transaction is a “deployment transaction”); (4) filters out LOG-type instructions in “static” execution
contexts; (5) filters out CALLDATALOAD instructions that raise the CDL_OOB flag'® (6) is more serious:
it filters out RETURNDATACOPY instructions that raise the returnDataCopyException; (7) filters out
CREATE(2) instructions at call stack depth = 1024 aswell as attempts to run such an instruction in a
static execution context; (8) filters out CALL-type instructions at call stack depth = 1024 and attempts
to transfer funds in a call when the execution context is static. Note: we may not do the filtering
of CALLDATALOADs at the hub level: we can do it in the MMU by doing “no-op” filtering
there.

I5recall that this flag signifies that the requested evm word is fully out of bounds of the current context’s call data; it

is justified in the out of bounds module;

42

Chapter 2

MMU

2.1 Column descriptions

It is understood that whenever we write “(X) is the import of the X column” that, in reality, it is the
import of X - bram where bram is a binary column which equals 1 iff (a) no exception occurs at that
row and (b) the instruction is one that touches memory. The binary column bgam is thus obtained as
the product of an instuction decoded column which detects RAM instructions and a binary column
which detects exceptions.

1. (MMU_STAMP): imported column containing the RAM stamp; abbreviated to (MMU O);

2. pINSTRUCTION_STAMP: column containging the micro instruction stamp; abbreviated to
pINSTO;

3. IS_MICRO_INSTRUCTION: binary flag that equals zero during the precomputation phase and
equals to 1 for rows containing micro instructions; abbreviated to IS_ y;

4. TOTAL_NUMBER_OF_MICRO_INSTRUCTIONS: established during the precomputation phase;
contains the total number of micro instructions the current macro instruction is converted to;

abbreviate to TOT*;

TOT" is constant while IS_ 1 = 0, decreasing until it hits 0 while IS_u = 1. It hitting 0 signifies the
final micro instruction in the sequence of micro instructions the macro instruction decomposes into.

5. (OFF'): import of the ; VAL' column; contains the first offset;

=)

. (OFF?) hi. import of the 2VALhi column; contains a potential second offset;
7. (OFF?) . import of the 2VALIo column; contains a potential second offset;
8. (SIZE): import of the ;VAL' column; contains a size (including code sizes);
9. (VAL") and (VAL'"): import of the ,VAL" ,VAL' columns;

Note that we have given these imported columns suggestive names rather than, say, <1VAL|°> etc... We
do this purely for improved readability. As suggested by their names, the (OFF!) and ((OFF2) M, (OFF?)")
will always contain offset arguments, (SIZE) will always contain a size argument, while (VALhi> and
<VAL|°> will always contain either a value loaded from RAM or call data, a value to store in RAM or
an address. Note that we don’t import 1VALhi: if the instruction makes it to the RAM preprocessor
its destination offset must be small (i.e. a 3 byte integer.) Note that we do import 2V/—\Lh': the second
offset (which points to either return data, call data or bytecode) can’t produce memory expansion,
hence it won’t have been tested for smallness. The current module however must test for its size, hence
the import.

43

10. (CN): imported column; contains the current execution context number;
11. (CALLER): imported column; contains the current caller execution context number;
12. (RETURNER): imported column; contains the current returner execution context number;

13. CONTEXT_SOURCE: column containing the execuction context number of the source context;
abbreviated to CN_S

14. CONTEXT_TARGET: column containing the execuction context number of the target context;
abbreviated to CN_T

15. COUNTER: counter column; in the precomputation phase counts either from 0 to 2 or from 0 to
15; in the rows containing micro instruction equals to 0; abbreviated to CT;

16. OFFSET_OUT_OF_BOUNDS: binary column; can only light up for code copy and call data copy
instructions; signifies when an “source offset” is large; abbreviated to OFF_OOB;

17. °PRECOMPUTATION: instruction decoded column that indicates the precomputation type as-
sociated with a given parametrized instruction; abbreviated to <>PRE;

“Source offsets” associated with code copy and call data instructions don’t get tested for smallness
(i.e. their ability to fit into 3 bytes): the Memory Expansion Module ignores them since they don’t
induce memory expansion. The OFF_OOB binary flag lights up as soon as the relevant offset ((OFF?)
for CODECOPY, EXTCODECOPY, CALLDATACOPY instructions (OFF!) for CALLDATALOAD) is > the reference
size (REFS) (which is ether the code size or the call data size.)

We now list some columns that will be passed down to the RAM data processor. These are limb
offset and byte offset columns. They typically contain the quotient and remainder of the euclidean
division of some absolute offset by 16. These values need to be justified, hence the inclusion of byte
and prefix (i.e. accumulator) columns that provide the respective (short) byte decompositions.

18. SOURCE_LIMB_OFFSET: abbreviated to SLO;
19. SOURCE_BYTE_OFFSET: contains a number in the range {0,1,...,15}; abbreviated to SBO;
20. TARGET_LIMB_OFFSET: abbreviated to TLO;
21. TARGET_BYTE_OFFSET: contains a number in the range {0, 1,...,15}; abbreviated to TBO;

22. NIB_1, NIB_2, NIB_3, NIB_4, NIB_5, NIB_6: nibble columns; typically contain the remainder
of a euclidean division by 16 or some expression constructed from two such remainders;

23. BYTE_1, BYTE_2, BYTE_3, BYTE_4, BYTE_5, BYTE_6, BYTE_7, BYTE_S: byte columns;
24. ACC_1, ACC_2, ACC_3, ACC_4, ACC_5, ACC_6, ACC_7, ACC_8: “accumulator” columns;

The accumulator columns “accumulate” the bytes of some byte decomposition. The value whose bytes
are being accumulated will typically be the quotient of some euclidean division by 16, e.g. that of some
offset, some size parameter, some offset plus size parameter, or some adjusted nonnegative difference,
ete... If OFF_OOB = 0 it targets a 3 byte integer; if OFF_OOB =1 it targets 16 byte integers;

25. 11, [2], -, [8]: (MMU O)-constant bit columns;

26. ALIGNED: (MMU O)-constant bit column; indicates whether certain offsets are aligned and hence
whether certain micro-instructions may be done fast by the RAM data processor, i.e. without
resorting to byte decompositions;

27. FAST: (MMU O)-constant bit column; indicates whether a micro-instructions will be done fast
by the RAM data processor, i.e. without resorting to byte decompositions; it is completely
determined by the micro-instruction;

44

28. MIN: column which may at times contain the “real size” of certain macro instructions; such a
real size may is typically computed as a minimum between context data (e.g. CALLDATA_SIZE
or CODESIZE) and a size stack argument;

29. TERNARY: (MMU(O)-constant ternary column i.e. it takes values in {0, 1,2}; abbreviated to
TERN;

2.2 Offset preprocessing

2.2.1 Absolute and relative offsets

In our arithmetization of memory, offsets can be absolute or relative. Thus when the RAM pre-
processor imports two offset columns from the stack, (OFF!) and (OFF2), the interpretation of these
offsets depends on the current instruction.

Absolute offsets. An execution context’s RAM is a word addressable byte array. As such every
byte has an absolute position within an execution context’s memory. Offset arguments that refer to
a position within the current execution context’s RAM, i.e.

1. the offset argument (OFF') of MLOAD, MSTORE, MSTORES,

2. the “destination” offset argument (OFF!) to any CODECOPY-type instructions,

the “destination” offset argument (OFF!) to CALLDATACOPY and RETURNDATACOPY,
the offset argument (OFF!) of any LOG-type instructions,

the offset argument (OFF!) of SHA3,

(

(

)
the offset argument (OFF!) of CREATE and CREATE2,
)

N ok @

the offset argument (OFF!) of RETURN and REVERT

are absolute.

Relative offsets. When the current execution context 6 executes (without raising an exception) on
a CALL-type instruction it spawns a descendant context 2. At the same time, the zk-evm fixes, once
and for all, some immutable characteristics of that descendant context Z. For instance, it fixes its
CALLER context number'. It also fixes 2’s CALLDATA_OFFSET and CALLDATA_SIZE parameters.
These are taken straight from the CALL-type instruction’s 6 or 7 stack arguments, namely the offset
and size parameters which define the call data.

Any access to call data (i.e. CALLDATALOAD, CALLDATACOPY but also CALLDATASIZE) performed while
executing within the execution context Z uses one or both of these execution context characteristics. In
particular, the first offset parameter of CALLDATALOAD and the second offset parameter of CALLDATACOPY
must be interpreted as offsets within € ’s RAM relative to CALLDATA_OFFSET. Accordingly, the read
operations that these two instructions require take place in €’s RAM using the absoluteoffsets one
imagines:

« CALLDATA_OFFSET + (OFF') for CALLDATALOAD;
« CALLDATA_OFFSET + (OFF2) for CALLDATACOPY;

Lit is the context number of €

45

We note at this point that a given execution context’s RAM is immutable while the zk-evm is
executing in a different execution context. Thus, resuming our previous discussion, 2’s call data
(actually, €’s RAM as a whole) is immutable while execution is taking place in 2 (or any of €’s
descendant contexts.) Applying changes to ¢’s RAM requires first resuming execution of € which in
turn requires exiting Z for good.

Similarly, when 2 exits (gracefully or not) it endows € with (potentially emtpy) return data. In
the zk-evm this is achieved by fixing some mutable characteristics of the parent context &. Thus % is
assigned a (new) RETURNER context number”. Furthermore, % is assigned RETURNDATA_OFFSET
and RETURNDATA_SIZE parameters. These are zero by default unless & exits gracefully with a data-
returning halt operation®, in which case they are the two stack arguments to the RETURN or REVERT
instruction that conclude 2’s execution.

In close analogy to the call data case, any access to return data (i.e. RETURNDATACOPY and
RETURNDATASIZE) performed while executing within the execution context % uses one or both of
the RETURNDATA_OFFSET and RETURNDATA_SIZE parameters. Thus the second offset parameter
of RETURNDATACOPY is interpreted by the zk-evm as an offset within 2’s RAM relative to RETURN-
DATA_OFFSET. Accordingly, all read operations this requires take place in 2’s RAM starting at the
absolute offset RETURNDATA_OFFSET + (OFF?).

2.2.2 RAM constancy

We say that a column X is stamp-constant if it satisfies:

All imported columns are automatically (MMUO)-constant. We further ask that the following con-
stants be (MMU O)-constant

1. CN_S and CN_T
2. OFF_OOB
3. all the nibble columns,

4. all the bit columns [1], ..., [8].

2.2.3 Columns established during precomputation

Some columns remain constant as long as we are in the precomputation phase. We say that a column
X is established in precomputation if it satisfies:

|57/JJ7;+1 =0
AND - Xi+1 = Xl
ISi,ui =0

The precomputation phase (which is characterized by IS_p = 0) of a macro instruction spans 3 or 16
rows depending on the binary column OFF_OOB. Columns that are established during precomputation
are constant during precomputation. The general principle is that these columns are “vetted” during
that phase and serve as micro-instruction-flow defining parameters in the micro-instruction writing
phase (which is characterized by IS_p = 1.) Examples include (columns containing the) quotients and
remainders of euclidean divisions. These are typically euclidean divisions of offsets and sizes by 16.
The following columns are established in precomputation:

2it is, unsurprisingly, the context number of 2.
3i.e. through a REVERT instruction that doesn’t raise a memory expansion exception or a RETURN instruction with
similar restrictions if & isn’t a deployment context.

46

1. SLO and SBO 4. NIB_1 and NIB_2

2. TLO and TBO

3. QUOT' and QUOT? 5. TOT*

Once the preprocessing exits the precomputation phase and enters the micro-instruction writing
phase (which is characterized by IS_p = 1) these columns may start changing. Some may increase
/ decrease by 1 with every successive row. This is typically the case for quotient columns which will
become limb offsets in the RAM data processor. Operations that span multiple limbs will typically see
their limb offsets grow by one with every successive micro-instruction (though there are exceptions).
The TOT* column obeys this logic perfectly: it decreases by one with every micro instruction until it

hits 0.
Established columns are completely reset with every new macro-instruction.

2.2.4 Binary, ternary, nibble and byte columns
The following columns are binary columns, i.e. they are columns X satisfying for for all 4, X;-(1—X;) = 0:

1. ALIGNED 3. 2], 5. [4], 7. 6]
2. [1], 4. 3], 6. [5], 8. 1S

We ask that the following columns contain bytes (i.e. integers in the range {0,1,...,255}):

1. BYTE_1 4. BYTE_4 7. BYTE_7
2. BYTE_2 5. BYTE_5
3. BYTE_3 6. BYTE_6 8. BYTE_S

We ask that the following columns contain nibbles (i.e. integers in the range {0,1,...,15}):

1. NIB_1 3. NIB_3 5. NIB_5
2. NIB_2 4. NIB_4 6. NIB_6

2.2.5 Heartbeat

The heartbeat of the RAM preprocessor is more complex than that of most other modules. The
job of the preprocessor is to decompose RAM macro-instructions into a series of RAM micro-
instructions. This task is decomposed into two phases:

1. precomputation: 3 or 16 rows;
2. micro-instruction writing: arbitrary number of rows;

The precomputation does all the offsets related byte decompositions required to decide on the micro
instruction flow. Most of the time offsets and sizes have already been checked for smallness by the
Memory Expansion Module. For such instructions computing the requisite euclidean divisions and
comparison can be done in 3 rows.

However, offsets that point within call data or bytecode haven’t been checked for smallness up
to this point: we have had no reason to do so as they can’t induce memory expansion. Recall that
if they are too large (i.e. exceed the call data size or code size) the instruction will simply write
SIZE many 0’s into memory. Smallness for offsets that point to return data, while also incapable of
producing memory expansion, is tested in a separate module. This module also test for max code size

47

constraints. RETURNDATACOPY and RETURN instructions in a deployment context whose maximal offset
excedes RETURNDATA_SIZE* or the CODESIZE parameter”’ don’t make it to the RAM preprocessor in
the first place. This smallness check is required. This check requires a byte decomposition of integers
of that fit into < 16 -8 +1 = 129 bits.

There is thus a nondeterministic bit OFF_OOB that indicates whether offsets overshoot CDS or
MaxCodeSize. And so depending on this nondeterministic bit the precomputation phase for CALLDATACOPY,
CALLDATALOAD, as well as CODECOPY and EXTCODECOPY instructions, may require 16 rows’.

The second phase concerns the micro-instruction writing per se. Deciding upon the order of opera-
tions is straightforward in theory but tricky when expressed in terms of contraints, we shall not dwell
on it here. Suffice it to say that a given macro-instruction may decompose into an arbirary (though
small) number of micro-instructions TOT*.

Both of these phases are required to process a single RAM-macro-instruction. These two phases
dictate the heartbeat of the module.

1. (MMUQ) is nondecreasing in the sense that Vi, (MMUQO);;+; € {{MMUO);,1+ (MMUQO),};
2. (MMUQOy), = 0;
3. 1 (MMUQO); = 0 THEN the entire i-th row is null; in particular the first row is all zeros;

4. 17 (MMUQO);41 # (MMUQO); THEN

(b) CTit1 =0;

(
(
(a) IS _pip1 =0;
)
(c) TOTE,, #0;

Regarding the constraint on TOT# ¢ instructions that make it to the RAM preprocessing always
require at least one micro-instruction to process. Operations with size 0 for instance or which
raise an exception are filtered out and don’t make it to the preprocessor.

5. 1r (MMUQO); # 0 THEN

(a) 1 IS_p; =0 THEN
i. 1r OFF_OOB; =0 THEN
A. 1r CT; # 2 THEN
CT7;+1 =14+ CTZ
IS_piv1 =0
B. 17 CT; =2 THEN IS__p;41 =1
ii. 1r OFF_OOB,; =1 THEN
A. 1 CT; # 15 THEN
CTit1 =1+CT;
IS_pit1=0
B. 1r CT; =15 THEN IS__pi;41 =1
6. 1FIS_pu; =1 71THEN CT; =0

7. 1F <MMU D>i+1 = <MMU D>Z THEN TOT#Z;H = TOT#i — ISiMz!H;

4i.e. OFF + SIZE > RDS

5i.e. SIZE > 24576

SWe will want provide a byte decomposition for the quotient of the euclidean division of a 129 bit integer by 16, so
the result fits into 16 bytes.

48

In other words, during the precomputation phase TOT* remains constant and in the micro-instruction
writing phase it decreases by one with every row. The first part we already imposed (when asking that
TOT" be established during precomputation) but the second part is new.

8. IF (ISi,ui =1 anD TOTY # O) THEN IS piq = 1;

9. IF ((MMU 0); #0 anp TOTH = O) THEN (MMUQO),;1; =1+ (MMUO);

We can also settle the behaviour of uINSTRUCTION_STAMP:

It is similar to TOT" in that it is (technically) established during precomputation but there is no
actual establishing happening: uINSTO just grows monotonically with every row counting the micro-
instructions. There is no resetting it in the trace.

The following illustrates the desired behaviour of these columns:

2.2.6 Byte decomposition constraints

The various byte, prefix and quotient columns satisfy byte decomposition contraints. The constraints
below apply for all k € {1,2,...,8}:

1. 1 IS_p; = 0 THEN

(a) 7 CT; =0 THEN ACC_k; = BYTE_k;;
(b) ¢ CT; # 0 THEN ACC_k; = 256 - ACC_k;_; + BYTE_k;

In other words, the ACC_k accumulate bytes during the preprocessing phase (which is characterized
by IS_u; = 0). What happens outside of that phase is unspecified.

2.2.7 Data organization

49

(MMUO) [OFF_OOB [CT [IS_4 [TOT” [uINSTO
0 0 0] 0O 0 0
0 0 0] 0 0 0
1 1 o] 0 0 |

Figure 2.1: The above represents the first few rows of the heartbeat columns. 0 padding is on display.
There is at least one macro RAM instruction: it raises the OFF_OOB flag and hence might for instance
be a code copying instruction or an instruction touching call data. This single RAM macro instruction

is converted into 33 (!) micro-instructions. This rules out CALLDATALOAD.

(MMUQO) | OFF_OOB | CT | IS_p | TOT* | uINSTO (MMUQ) | OFF_OOB | CT | IS_u | TOTH | pINSTO
] r—1 ‘ off_oob ‘ 0 ‘ 1 0 I ‘] s—1 ‘ off_oob'' ‘ 0 ‘ 1 ‘ 0 ‘ v ‘
r 1 0 0 7 I 0 0 0 83 v
r 1 1 0 7 I 0 1 0 83 v
T 7 7 0 2 83 v
r 6 w+1 0 0 82 v+1
r) uw+2 0 0 81 v+ 2
r 1 0 1 n+6 s 0 0 1 v+ 82
r 1 0 0 w+7 s 0 0 0 v+ 83
r+1 off_oob' ‘ 0 ‘ 0 ‘ tot! ‘ w+7 ‘ ’ s+1 ‘off_oob"' ‘ 0 ‘ 0 ‘tot"' v+ 83

Figure 2.2: Left hand side. The r-th macro-instruction decomposes into 7 micro-instructions. The
corresponding rows have IS_MICRO_INSTRUCTION = 1 (see green cells.) It also raises the OFF_OOB
flag so that the precomputation phase lasts 16 rows. When entering this macro instruction the RAM

offset processor had already written p micro-instructions.

Right hand side. The s-th macro-instruction decomposes into 83 (!) micro-instructions. The corre-
sponding rows have IS_MICRO_INSTRUCTION = 1 (see green cells.) It doesn’t raise the OFF_OOB
flag so that the precomputation phase lasts only 3 rows. When entering this macro instuction the
RAM offset processor had already produced v individual micro-instructions.

50

16

(INST) CN_S CN_T ((REFO)) ((REFS)) (OFF!) | (OFF?) | (SIZE) <VALhi><VAL|°> INFO (#) OPRE
MLOAD (CN) OFF loaded value
MSTORE (CN) OFF value to store
MSTORES (CN) OFF value to store
REVERT (CN) (CALLER) || R@O RQC OFF SIZE (CTYPE) = 0
RETURN (CN) (CALLER) | RO ROC OFF SIZE (CTYPE) = 0
RETURN (CN) OFF SIZE | BC_ADDR (1) || (CTYPE) =1 | DEP#
CREATE (CN) OFF SIZE DEP_ADDR DEP#
CREATE2 (CN) OFF SIZE DEP_ADDR DEP+#
LOGX (CN) OFF SIZE LOG#
SHA3 (CN) OFF SIZE SHA#
CODECOPY (CN) CODESIZE T_OFF | S_OFF | SIZE BC_ADDR (¥) (CTYPE) DEP+#
EXTCODECOPY (CN) CODESIZE (1) || T_OFF | S_OFF | SIZE ADDR DEP#
CALLDATACOPY | (CALLER) (CN) CDO CDS T_OFF | S_OFF | SIZE [CSD==1] | TX#
RETURNDATACOPY || (RETURNER) (CN) RDO RDS T_OFF | S_OFF | SIZE
CALLDATALOAD (CN) CDO CDS OFF loaded value || [CSD==1] | TX#

Figure 2.3: Some comments: the columns (OFF'), (OFF2), (SIZE), (VAL") and (VAL') are imported from stack, they contain respectively
LVAL", ,VAL", ,VAL" ,VAL" and ,VAL". Recall, at this point, the discussion around CODECOPY and RETURN’s mostly empty fourth
stack item. The relevant cells are signaled with a (). Note that the CODESIZE argument of the EXTCODECOPY (i.e. the cell with (1))
is in reality unknown to the execution context. It will be verified in the data processing module where we import from the ROM module the
correct code size.

2.3 Combinatorics of overlapping intervals

2.3.1 Purpose

The purpose of the present section is to introduce the sorts of checks that the zk-evm carries out during
offset processing. The question is entirely about the ways in which (integer) intervals may overlap with
one another.

2.3.2 Data

The arithmetization we propose accesses data in aggregate form (i.e. as 16 byte integers) rather than
on a byte by byte basis. In order to perform data operations on the byte level the zk-evm procedes
with all sorts of byte slicing and recomposition operations. We provide further details about these
so-called transplants and surgeries in the RAM data processor chapter. The present module is
not equipped to carry these out. What it does is decompose single RAM instructions (which we dub
macro-instructions) into a series of smaller micro-instructions which the data processor knows
how to process. This preliminary reduction of macro-instructions into sequences of micro-instructions
requires dealing with questions related to limb offsets and byte offsets. The basic definition is that
the limb offset LO and byte offset BO of an offset OFFSET € {0,1,2,...} are the quotient and
remainder, respectively, of the euclidean division of OFFSET by 16:

OFFSET = 16 - LO + BO,
BO € {0,1,...,15}

While the RAM data processor can access various “data tracks”, all of them work with limbs. The RAM
preprocessor thus always works with limb offsets, byte offsets and their combinatorics — regardless of
the (macro-)instruction it is tasked with processing. It may at times also set exogenous data flags to
indicate to the data processor from where to pull exogenous data. We will deal with this directly in
the constraints.

Data transfers from a source data track to a target data track usually follow the following pattern:

1. Relevant source limbs are only read once: all required bytes are extracted in one micro-instruction
at which point the zk-evm moves on to the next source limb or to the next macro-instruction;

2. Target limbs may get written to once or twice depending on several factors such as: are offsets
aligned? Will this particular target limb contain both data and (zero) padding?
One of the first questions the RAM preprocessor must answer is therefore that of
Question 1. How many limbs of data will be accessed in the source?

This number obviously contributes to TOTAL_NUMBER_OF_MICRO_INSTRUCTIONS column
which establishes the total number of micro-instructions that the pre-processor writes for the RAM
data processor to perform. The largest offset touched when reading SIZE many bytes starting at offset
OFFSET is OFFSET + (SIZE — 1). Thus, setting

16-LO_1+BO_1 = OFFSET
16-LO0_2+BO_2 = OFFSET + (SIZE — 1)

BO_1,BO_2 € {0,1,...,15}

The total number of source limbs to access is ‘ LO_2—-LO_1+1 ‘

The first micro-instruction may involve extracting a suffix from the first touched limb or extracting
a chunk of (consecutive) bytes from the middle of the limb if only one limb is touched. That chunk
of bytes may fit into a single target limb or straddle two consecutive ones. Deciding on which is the
case is required to settle the nature of the first micro-instruction and, in case TOT* > 2, the final
micro-instruction as well as any transition micro-instructions. Transitions occur when the zk-evm
moves from data writing to zero padding.

52

OFFSET OFFSET + (SIZE - 1)

! !
EREREN

N —

SIZE many bytes

Figure 2.4: The data slice touches a single limb. The limb represented above is the LO™ limb and the
first byte the micro-instruction will access is that at index BO within the limb. In the present situation
LO_2 =LO_1 and so the macro-instruction accesses a single source limb.

OFFSET OFFSET + (SIZE - 1)

il HEEE - 10ER Ili
- —

SIZE many bytes

Figure 2.5: The data slice touches several limbs. In the present situation LO_2 > LO_1 and so the
macro-instruction accesses at least 2 source limbs.

BO_1 BO_1+ (SIZE-1)

y l
ENENEN

N\

*IIIII

BO_2

Figure 2.6: The data slice touches a single limb.

Question 2. How to determine in a constraints whether writing SIZE bytes starting at offset OFFSET
requires writing one or two limbs in the target?

To answer the question we define an “answer bit” [ans.] which equals 1 if writing overlaps two

53

BO_1 BO_1+ (SIZE-1)

y J
ERENEN

*IIIII

BO_2

Figure 2.7: The data slice touches several limbs.

limbs and 0 if only one target limb is involved. This bit is constrained as below:

[ans] =1 <= BO_2+4 (SIZE—1)>15
[ans] =0 <= BO_2+ (SIZE—1)<15

which is equivalent to the constraint
(2 - Jans.] — 1) . (BO_2 + (SIZE-1) — 15) — [ans.] = nibble

Where nibble is a column constrained to take values in the range {0,1,...,15}. This sort of constraint
plays a prominent role in what follows. The constraint part is two fold: the equation per se and the
range constraint on the nibble column.

\ Final data \ BO_3
writing step \l/_

ENEEEER

First padding Second padding

Figure 2.8: The above represents 3 consecutive micro-instructions. The first one is the final data
writing step; it touches a single target limb. The second one pads the same target limb; thus at
the step where the zk-evm transitions from data writing to zero padding the target limb offsets isn’t
updated. The nex step is just zero padding a limb.

54

Final data
writing step BO_3

\
HEEN ER

First padding

Figure 2.9: The above represents 2 consecutive micro-instructions. The first one is the final data
writing step; this time it touches two target limbs. The second micro-instruction pads the next target
limb; thus at the step where the zk-evm transitions from data writing to zero padding the target limb
offsets is updated.

2.4 Constraints

2.4.1 Parametrized instruction decoding, preprocessing and constraints

Instruction decoding in the RAM offset processor is more involved than elsewhere. This is because:
1. it fufills different purposes in the preprocessing phase and in the micro-instruction writing phase;
2. in either phase the zk-evm does parametrized instruction decoding.

One of the purposes of the precomputation phase (characterized by IS__p = 0) is to produce a series of
binary flags. How many of these binary flags are to be computed as well as the procdedure by which they
are to be computed (among other things) can be read off the instruction decoded *PRECOMPUTATION
parameter. Examples of such flags include the ALIGNED flag which tells the RAM data processor
whether certain memory operations can be done without any byte decompositions (ALIGNED = 0
means the micro-instruction will be a type of limb surgery, ALIGNED = 1 means the micro-instruction
will be a type of transplant.)

Once these binary flags are set and justified at the end of the preprocessing phase, the current
opcode and these flags considered as a whole are understood as a parametrized instruction. In the
micro-instruction writing phase (characterized by IS_u = 1) it is parametrized instructions that are
instruction decoded in a process we dub parametrized instruction decoding’ . This allows for the
second phase of micro-instruction writing to produce the adequate sequence of micro-instructions.

Thus the workflow is as follows:

1. upon entering a new macro instruction the IS_ pu flag is set to 0 and stays = 0 for either 3 or 16
rows;

2. the instruction and IS_p = 0 are instruction decoded®; this is mostly about retrieving the
precomputation type PRECOM PUTATION;

3. the offset preprocessor executes the preprocessing associated with the precomputation type;

"This is technically also true of the preprocessing phase, though simpler: code copying instructions and call data
instructions may have offsets that drastically go out of bounds which will alter the precomputation and the resulting
sequence of micro instructions; the behaviour of RETURN depends on whether the current execution context is a deployment
context or not. Thus instructions are decorated by two binary flags OFF_OOB and CTYPE that affect their instruction
decoding in the preprocessing phase.

8 An info bit can be part of the picture too; either (CTYPE) or [CSD = 0]

55

4. this produces a number of parameters and binary flags;
5. when the precomputation phase comes to an end IS_ i switches to 1;

6. the instruction and IS_p = 1 and the flags that were just produced now form a parametrized
instruction;

7. this parametrized instruction is instruction decoded until TOT* hits zero;
8. in that time the parameters may change and lead to changes the decoded uINST;

This produces a sequence of micro-instructions. These micro-instructions are imported by the RAM
data processor where each of these requests is honored in order of production.

2.4.2 Setting the FAST flag

In the following sections we detail how the offset preprocessor breaks RAM maxro-instructions down
into a sequence of RAM micro-instructions. Micro-instructions are either transplants (i.e. fast oper-
ations i.e. operations requiring not byte decomposition to perform) or surgeries (i.e. slow operations
i.e. operations that require the RAM data processor to carry out one or more byte decompositions.)
Thus the FAST flag depends purely on the micro-instruction. It will be set without further comment
on every row where IS_ y = 1 according to the following:

Micro-instructions with FAST =1: —

1. RamToRam 6. KillingThree 11. StoreXinAtwoRequired

2. ExoToRam 7. PushTwoRamToStack 12. StoreXinAthreeRequired

3. RamIsExo 8. PushOneRamToStack

4. KillingOne 9. PushTwoStackToRam 13. StoreXinB

5. KillingTwo 10. StoreXinAoneRequired 14. StoreXinC
Micro-instructions with FAST = 0: —

1. RamLimbExcision, 11. LsbFromStackToRAM,

2. RamToRamSlideChunk, 12. FirstFastSecondPadded,

3. RamToRamSlideOverlappingChunk, 13. FirstPaddedSecondZero,

4. ExoToRamSlideChunk, 14. Exceptional_RamToStack_3To2Full,

5. ExoToRamSlideOverlappingChunk, 15. NA_RamToStack_3To2Full,

6. PaddedExoFromOne, 16. NA_RamToStack_3To2Padded,

7. PaddedExoFromTwo, 17. NA_RamToStack_2To2Padded,

8. FullExoFromTwo, 18. NA_RamToStack_2TolFullAndZero,

9. FullStackToRAM, 19. NA_RamToStack_2TolPaddedAndZero,

10. ByteSwap, 20. NA_RamToStack_1TolPaddedAndZero,

(on rows where IS__p = 0 one may set FAST to 0)

2.4.3 Typel
Instructions

The following instructions follow type 1 precomputation:

56

INST IS_u | ALIGNED <>TO_RAM OPRE 1INST
MLOAD 0

MSTORE 1

MSTORES8 1

MLOAD 0 0 NA_RamToStack_3To2Full
MLOAD 1 0 PushTwoRamToStack
MSTORE 0 1 FullStackToRAM
MSTORE 1 1 PushTwoStackToRam
MSTORE8 ” 1 _ LsbFromStackToRAM

1. MLOAD 2. MSTORE 3. MSTORES8

Note that CALLDATALOAD, while similar (at a first glance) to MLOAD, follows a different, more complex,
precomputation type. We will expand as to why in due time.

‘Workflow

For instructions with “PRE = 1 the precomputation consists in
1. setting and verifying the quotient and remainder of the euclidean division of (OFF!) by 16,
2. setting the ALIGNED flag to 1 if the remainder of said euclidean division is 0.

Note that the ALIGNED flag will be ignored by the MSTORE8 instruction.

The RAM data processor deals with MSTORES8 instructions in a uniform way: there are no fast
MSTORES instructions, i.e. every MSTORES8 translates to a surgery micro instruction in the RAM data
processor. Parametrized instruction decoding for MSTORE8 thus coincides with standard instruction
decoding: every MSTORES8 instruction gives rise to a LsbFromStackToRAM micro instruction in the
RAM data processor.

MLOAD and MSTORE instructions, on the other hand, can give rise to either fast micro instructions
or slow micro instructions. The parametrized instruction decoding of MLOAD and MSTORE thus depends
on a single binary flag, ALIGNED, that lights up precisely when (OFF!) is a clean multiple of 16.
Thus MLOAD translates to the transplant PushTwoRamToStack when ALIGNED = 1 and to the surgery
[3 = 2Full] when ALIGNED = 0. Similarly MSTORE translates to the transplant PushTwoStackToRam
when ALIGNED =1 and to the surgery [2Full = 3] when ALIGNED = 0.

Parametrized instruction decoder

The relevant portion of the parametrized instruction decoder looks like so:

Preprocessing

We collect under the moniker Type_1 the following collection of constraints. We jump straight to the
last preprocessing step:

All constraints in this subsection assume IS_p; =0 AND IS__p;41 =1

57

1. OFF_OOB; = 0;
Indeed, (OFF); already went through the Memory Expansion Module where it was tested for smallness.
2. We fix the source and target context according to the TO_RAM; flag:
(a) 17 “TO_RAM; = 0 THEN
CN_S,; = (CN);
CN_T; =0

(b) 17 °TO_RAM,; = 1 TiEN
CN_S; =0
CN_T, = (CN);
In other words, MSTORE and MSTORES8 have target context equal to the current context (CN_T, =

(CN);) and MLOAD has source context equal to the current context (CN_S; = (CN);). The other
context is zero in both cases.

We can of course subsume the above in the constraints CN_S; = (1 — “TO_RAM;) - (CN); and
CN_T; = “TO_RAM, - (CN);.

3. (OFF!); =16 - ACC_1, + NIB_1;;

4. we set the source and target limb and byte offsets:

(a) 1 ©TO_RAM; = 0 THEN
SLO; 41 =SLO; = ACC_1,
SBO;+1 =SBO; = NIB_1;
TLOj4+1 =TLO; =0
TBO;+; =TBO; =0

(b) 17 °TO_RAM; = 1 THEN
SLO; 41 =SLO; =0
SBO,;+1 =5SBO; =0
TLO;4+1 = TLO; = ACC_1,
TBO,4+1 = TBO; = NIB_1,

Again we can subsume the previous constraints in a linear combination as before.

5. Set the fast operation flag:

1r NIB_1, =0 THeEN ALIGNED; =1,
1r NIB_1, # 0 THEN ALIGNED; = 0;

6. TOT! = 1: an MLOAD, MSTORE or MSTORES is dealt with by the RAM data processor in one micro
instruction;

Micro-instruction writing

All constraints in this subsection assume IS_ p; = 1

1. The source and target limb were already set.

58

2. 1F ALIGNED; = 1 THEN
IF QTO_RAI\/Ii =0 THEN uINST,; = PushTwoRamToStack
IF (OTO_RAMi =1 anD (INST); = MSTORE) THEN pINST; = PushTwoStackToRam
3. 1F ALIGNED; = 0 THEN
i “TO_RAM; = 0 T1EN uINST; = NA_RamToStack_3To2Full
IF (OTO_RAMi =1 anp (INST); = MSTORE) THEN uINST; = FullStackToRAM

4. 1r (INST); = MSTORE8 THEN pINST; = LsbFromStackToRAM

2.4.4 Type 2
Instructions

The following instructions follow type 3 precomputation:

1. RETURN in a non deployment context 2. REVERT

‘Workflow

The precomputation phase of type 2 is involved. It requires computing a number of euclidean divisions
and doing a few comparisons. Here is the general overview of the computation:

1. The preprocessor first determines the “real size” of data to be moved, i.e. the minimum
MIN := min{(SIZE), (R@C)}

Indeed, when returning or reverting successfully, the current execution context writes as much
of its return data to its parent context as the parent context permits; the “as much as possible”
part of that statement is captured by the minimun.

2. It then determines the euclidean divisions

(OFF1) = 16-ACC_1+NIB_1,
(OFFY) 4+ (MIN—1) = 16-ACC_2+ NIB_2,
(REO) = 16-ACC_3+ NIB_3,
(R@O) + (MIN—1) = 16-ACC_4+ NIB_4.

Note that all these integers have previously been checked for smallness (i.e. they fit into 3 bytes)
by the Memory Expansion Module; we know that proving these euclidean divisions will require
only byte decompositions of (what are a priori known to be) three byte integers ACC_1, ACC_2,
ACC_3 and ACC_4. Note, too, that instructions with zero size will be filtered out before reaching
the preprocessor.

3. The current macro-instruction is broken down into TOT# = ACC_2—ACC_1+1 micro-instructions;
there are several execution paths ahead:

(a) ACC_2 = ACC_1li.e. TOT" =1 means that the bytes to write to the caller RAM live in a
single limb of the current execution context; a single surgery will suffice;

(b) ACC_2=ACC_1+1ie. TOT" =2 means that the bytes to write to the caller RAM live
in two contiguous RAM limbs of the current execution context;

59

(c) ACC_2> ACC_1+2ie. i.e. TOT" > 3 means that the bytes to write to the caller RAM
live in at least 3 contiguous RAM limbs; the first and last of these may only be partially
copied to their destination, but ACC_2 — (ACC_1+1) = TOT* —2 > 1 will fully carry over
to the caller RAM;

The sequence of micro-instructions into which the macro-instruction decomposes reflects this
structure:

(a) In the first case a single surgery will suffice; this surgery may span one or two (neighboring)
limbs in the target context (i.e. the caller context); determining which surgery applies
requires us to figure out which of the following holds:

NIB_3 > NIB_1? or NIB_3 < NIB_1?

In the first case a chunk of consecutive bytes from the source limb will be split and made
to replace a suffix and a prefix of two neighboring limbs in the caller RAM. In the second
case a chunk of consecutive bytes in the source limb will replace a chunk of bytes in a limb
of the caller RAM.

(b) In the second case two surgeries are enough; again there are various possibilities for these
surgeries; the previous discussion applies, but we now also have to consider the second limb,
a prefix of which will replace either (a chunk of consecutive bytes of a single limb in the
caller RAM) or a suffix and a prefix of two consecutive limbs in the caller RAM; determining
which surgery applies requires to answer dual question:

NIB_4 < NIB_2 ? or NIB_4 > NIB_2 ?

(c¢) In the third case the initial surgery (which follows the logic laid out in part earlier) is
followed by TOT* — 2 > 1 full writes which in turn is followed by a final surgery (which
follows the logic laid out in part earlier).

4. Note that in the third case we can further distinguish between fast operations and slow ones.
The ACC_2 — (ACC_1+1) full writes will be fast if NIB_1 = NIB_3, otherwise they will be slow.

Note that the arithmetization treats the second and third case on equal footing.

Parametrized instruction decoder

The relevant portion of the parametrized instruction decoder looks like so:

Figure 2.10

Context constraints

We collect under the moniker Type_2 the following collection of constraints:

1. We fix the source and target context:

CN_S, = (CN);
CN_T, = (CALLER);

2. OFF_OOB,; = 0;

60

Let us expand on this constraint. Before entering the RAM preprocessor the offset and size parameters
of the RETURN/REVERT instruction underwent analysis in the Memory Expansion Module where they
were tested for smallness. We therefore know that both of them are small (i.e. fit into 3 bytes). Their
sum fits into 3 * 8 4+ 1 bits and the quotient of the euclidean division by 16 of these integers fit into 3
bytes (and the remainders are nibbles.) This allows us to set, a priori, OFF_OOB, = 0.

Preprocessing

We jump straight to the last preprocessing step:

All constraints in this subsection assume IS_p; =0 AND IS_p;01 =1

Euclidean divisions. ACC_1, ACC_2, ACC_3 and ACC_4 target quotients of certain euclidean di-
visions and NIB_1, NIB_2, NIB_3 and NIB_4 target the associated remainders:

(OFF1); = 16-ACC_1, +NIB_1,
(OFFY); + (MIN; —1) = 16-ACC_2; + NIB_2,
(R@O); = 16-ACC_3, + NIB_3;
(R@O); + (MIN; —1) = 16-ACC_4, + NIB_4,

(The value of MIN; is set below.) Note that we don’t “use” ACC_2; or ACC_4; per se; they exist
purely to justify the associated nibbles NIB_2; and NIB_4,.

Comparisons. We justify the three bit columns [1], [2] and [3] and the fifth accumulator column

ACC_5:
((ROC); — (SIZE);) - (2-[1]:i —1) — [l = ACC_S5;
(NIB_3; —NIB_1;) - (2-[2[; — 1) —[2]; = NIB_5,
(NIB_2; —NIB_4;) - (2-[3]; —1) —[3]; = NIB_S,
Thus
[1]=1 <= (RQC) > (SIZE)

I=1
[2]=1 <= NIB_3>NIB_1
[B]=1 <= NIB_2>NIB_4

Note that NIB_5 and NIB_6 don’t play a functional role in type 2 instructions. Their sole
purpose is in establishing [2] and [3].

Establishing minimum. We set the minimum MIN := min{(SIZE), (R@C)}:
MIN; = [1]; - (SIZE); + [1]; - (RQC);.
(Recall our standing convention of writing [k]Y := (1 — [k]).)
Workflow parameters. We establish the TOTAL_NUMBER_OF_MICRO_INSTRUCTIONS:
TOT# = ACC_2, — ACC_1, + 1
and [4] which purely measures whether TOTY =1 or TOT/ > 1:

1 TOTY =1 THEN [4]; =1
1F TOT! # 1 THEN [4]; =0

We now establish [5];. This bit only matters when TOTY =1 ie. [4] = 1. [5] decides which
operation to perform when NIB_3 > NIB_1 (i.e. [2]; =1)

1. 1F [4]; = 0 THEN [5]; =0

61

2. 1F [4]; = 1 THEN
NIB_3 + (MIN; — 1) — 16 - [5]; = NIB_7;
Note that NIB_7 doesn’t play a functional role in type 2 instructions. Its sole purpose is in
establishing [5].
We give more details. Assume [4]; = 1 i.e. one micro-instruction is enough. If NIB_3 < NIB_1
the single operation is necessarily a RamToRamSlideChunk. But if NIB_3 > NIB_1 it could either

be a RamToRamS1lideChunk or a RamToRamSlideOverlappingChunk. The second case happens iff
NIB_3+ (MIN; — 1) > 16 i.e. [5]; = 1 We set the fast operation flag:

7 NIB_1, = NIB_3; TueN ALIGNED; =1
1r NIB_1; # NIB_3; THEN ALIGNED; =0

We establish the source and target limb and byte offsets:

SLO;41 = SLO; = ACC_1,
TLO; 1y = TLO; = ACC_3,
TBO,;,; = TBO, = NIB_3,

Micro-instruction writing

We distinguish several cases. Note that

All constraints in this subsection assume IS_ p; =1

1. SLO; = SLO;_1 +IS_pu;—1: the source limb offset grows by 1 with every instruction, regardless
of anything else;

2. 1F [4]; =1 THEN
a) SLO; and SBO; are already set

TLO; and TBO; are already set
SIZE; = MIN;

IF [5]; = 0 THEN uINST; = RamToRamS1lideChunk
17 [5]; = 1 THEN pINST; = RamToRamSlideOverlappingChunk

Recall that the case [4]; = 1 corresponds to a the single surgery, so this single constraint is
sufficient.

3. 1F [4]; = 0 there are most steps but they are less cramped. We start with TLO:

(a) 1F IS_p;—1 =0 THEN
TLO,;,1 = TLO; + (ALIGNED; + [2];)

Note that ALIGNED, + [2]; =1 <= NIB_3 > NIB_1
(b) IS _pi—1 =1S_p; =1S_piy1 =1 THEN

TLO;1 = TLO; + 1

Note that the middle condition IS_ u; = 1 is redundant;

62

The previous two columns signify that if NIB_3 > NIB_2 then TLO; grows by one with every
micro instruction. However when NIB_3 < NIB_2 the first limb in the target is modified by two
successive micro-instructions. This is captured by the above constraints.

(¢) IFIS_pi—1=0
i. SIZE; = (15— NIB_1;) + 1
ii. 17 [2]; =0 THEN pINST; = RamToRamSlideChunk
iii. 17 [2]; =1 THEN uINST; = RamToRamSlideOverlappingChunk
(d) 1 IS_p;—1 =1 THEN
i. SBO; =0
ii. TBO; = NIB_3; + 16 — NIB_1, — 16 - (ALIGNED; + [2]:)
Note that by construction, for type 2 instructions, ALIGNED; and [2]; measure disjiont
events, so that ALIGNED; + [2] = ALIGNED; + [2] — ALIGNED; - [2] = ALIGNED; V [2]
is a binary column and its interpretation is ALIGNED; +[2] =1 <= NIB_1 < NIB_3.
iii. 17 TOTY # 0 THEN
A. SIZE; =16
B. 1 ALIGNED; =1 THEN pINST; = RamToRam
C. 1F ALIGNED; = 0 THEN pINST; = RamToRamSlideOverlappingChunk
iv. 1r TOTY =0 THEN
A. SIZE; =NIB_2, + 1
B. 1F [3]; = 0 THEN uINST; = RamToRamS1lideChunk
C. 17 [3]; =1 THEN pINST,; = RamToRamSlideOverlappingChunk

2.4.5 Type 3
Instructions

The following instructions follow type 3 precomputation:

1. SHA3 3. CREATE and CREATE2
2. LOGO-L0G4 4. RETURN in a deployment context
‘Workflow

Parametrized instruction decoder

The relevant portion of the parametrized instruction decoder looks like so:

Context constraints
We fix some context information: We collect under the moniker Type_3 the following collection of
constraints:
1. source and target contexts:
CN_S, = (CN);
CN_T,; =0
2. OFF_OOB; = 0;

Let us expand on this constraint. Just as with Type_1, (OFF!); already went through the Memory
Expansion Module where it was tested for smallness. The computation also tested (SIZE); for smallness.
Thus arriving into the present module we know that both of them are small (i.e. fit into 3 bytes) and
so their sum fits into 3 % 8 4+ 1 bits and the quotient of the euclidean division by 16 of these integers fit
into 3 bytes (and the remainders are nibbles.)

63

INST IS_s | [1] | [2] | ALIGNED | INFO || ®X_SHA3 | ®X_LOG | X_ROM | °PRE uINST
SHA3 1 0 0
LOGX 0 1 0
CREATE 0 0 1
CREATE2 1 0 1
RETURN 1 0 0 1
0 0 0 FullExoFromTwo
same as 0 0 1 same same same same RamIsExo
above 1 0 PaddedExoFromOne
1 1 PaddedExoFromTwo

Figure 2.11: The <>X_ROM, QX_LOG and <>X_SHA3 columns take the same value in the IS_pu =1
case as in the IS_ p = 0 case. The [1] column records whether the current micro instruction is forms a
full word of exogenous data or a padded one. The [2] column records, in case where the (SIZE) isn’t a
clean multiple of 16, the kind of final micro-instruction that will take place: either we form a padded

limb of exogenous data using one limb from RAM or we form one padded limb of exogenous data using
two limbs from RAM.

Preprocessing

We jump straight to the last preprocessing step, i.e. constraints below are under the assumption

‘ |57/J,z =0 AND Isi/li-i-l =1

Euclidean divisions. ACC_1, ACC_2 target the quotients of certain euclidean divisions and NIB_1,
NIB_2 target the associated remainders:

Fast operation. We set

(OFFL), =
{ (SIZE);

1F NIB_1;, = 0 THEN ALIGNED,; =1
1F NIB_1; # 0 THEN ALIGNED; =0

Special final micro-instruction. We set

16 - ACC_1, + NIB_1,
16 - ACC_2; + NIB_2;

¥ NIB_2; =0 THEN [1]; =0
IF NIB_2; # 0 THEN [1]; =1

There is a final operation with padding if the SIZE isn’t a clean multiple of 16. The [1] flag

detects it.

Nature of final micro-instruction. In case there is a special final instruction [2] will distinguish
between the two possibilities:

1. ¢ ALIGNED; =1 THEN [2]; = 0;

64

2. 1F ALIGNED; = 0 THEN
NIB_1, + (NIB_2, — 1) — 16 - [2]; = NIB_3,
Subsuming the previous discussion:
ALIGNED =1 (OFF!) is a clean multiple of 16

—
[l]=1 <= there’s a special final operation
<= (SIZE) isn’t a clean multiple of 16

[2l=1 <= NIB_1;+(NIB_2,-1)>16
Workflow parameters. We establish the TOTAL_NUMBER_OF_MICRO_INSTRUCTIONS:
TOT! = ACC_2; + [1];
We establish the initial source and target limb and byte offsets:

SLO; = ACC_1,
SBO; = NIB_1;

TLO; = 0
TBO; 0

Constraints

All constraints in this subsection assume

1. the source and target limb and byte offsets change very predictably:

SLO; = SLOZ‘_1+|57,UZ‘_1
SBO, — NIB_I,

TLOl = TLOi_l + Isfﬂi—l
TBO; 0

2. 1F TOTY # 0 THEN
(a) 1F ALIGNED; =1 THEN uINST; = RamIsExo
(b) 17 ALIGNED; = 0 THEN pINST; = FullExoFromTwo
3. 1F TOTY =0 THEN
(a) 1F (ALIGNEDZ» =1 anp [1]; = 0) THEN pINST; = RamIsExo

(b) ¥ (ALIGNEDZ- £1 0r [1]; # 0)
i. SIZE; = NIB_2; THEN
ii. 1F [2]; = 0 THEN pINST; = PaddedExoFromOne
iii. 17 [2]; =1 THEN pINST; = PaddedExoFromTwo
2.4.6 Typed4
Instructions

The following instructions follow Type 4 precomputation:

65

1. CALLDATACOPY 3. CODECOPY

2. RETURNDATACOPY 4. EXTCODECOPY

Type 4 instructions have subtle differences between themselves. We thus further subdivide the type
into 3 subtypes:

[INST PRE
CODECOPY
EXTCODECOPY
CALLDATACOPY
RETURNDATACOPY

Context

We collect under the moniker Type_4 the following collection of constraints (which will further depend
on the ternary column TERN). It starts with setting source and target context numbers:

1. We fix the target context, it is the current execution context: CN_T,; = (CN);;
2. The source context and exodata flags depend on the instruction:

(a) 1r “PRE = type4RD THEN CN_S; = (RETURNER); and

X_SHA3, =0
X_LOG, =0
X_ROM, = 0
X_TXCD, =0

(b) ¢ (INST); = CALLDATACOPY THEN CN_S; = (CALLER); and

X_SHA3, = 0

X_LOG; = 0

X_ROM, = 0

X TXCD : { 1 1S_p; =1 anD TOTRD;_; # 0 THEN X_TXCD, = (INFO)
- "l 1 IS_p; =0 or TOTRD;_; =0 THEN X_TXCD,; =0

Recall that we distinguish between transaction call data and call data created in CALL-type
instructions.

(¢) 17 (INST); = CODECOPY OR (INST); = EXTCODECOPY THEN CN_S; = 0 and

X_SHA3, =0

X_LOG; =0

%X ROM : { 1F IS _pu; =1 AND TOTRD;_; # 0 THEN X_ROM, =1
- "l FIS_pu; =0 or TOTRD;—; =0 tHEN X_ROM,; =0

X_TXCD, =0

3. OFF_OOB,; is set along with TERNARY;

Along with CALLDATALOAD, the above are the only instructions that may set off the OFF_OOB flag.
As already expanded upon elsewhere, the “data source offset” (OFF?) of these instructions points
into bytecode or calldata (we deal with return data in the following paragraph). It may very well go
completely out of bounds and not provoke an exception. When it does, OFF_QOB,; will be set.

The case where the “data source offset” points into return data is different: we test the fact that the
byte slice it points to is in bounds before the macro-instruction ever makes it to the RAM preprocessor.
Recall that out of bounds RETURNDATACOPY instructions raise an exception in the evm.

66

Establishing TERN

We establish the TERNARY column. Recall that it is a (MMU O)-constant column. Its value determines
the kinds of micro-instructions the macro-instruction is translated to. There are three cases to consider:

TERN = 0: (OFF?) + ((SIZE) — 1) < (REFS): the instruction behaves like a type 3 instruction with a
caveat about the exodata source; there is no zero padding;

TERN = 1: (OFF?) < (REFS) < (OFF?) + ((SIZE) — 1): the instruction reads at least one byte from
its source and writes it to RAM; it follows it up by writing at least one 0 padding byte;

TERN = 2: (REFS) < (OFF?): the instruction writes (SIZE) many zeros to memory, i.e. there is only
zero padding;

The trickiest case to arithmetize is TERN = 1. We go about establishing the value of TERN. We jump
straight to the last preprocessing instruction:

‘All constraints in this subsection assume IS_pu; =0 AND IS__p;4q1 =1

1. 17 (OFF2)Pi 2£ 0 THEN
TERN; = 2
OFF_OOB, = 1

(OFF2)Mi =£ 0 means that (OFF2) is grossly out of bounds.
2. 17 (OFF%) M = 0 THEN
(a) 1r TERN; =0 THEN

|
o

ACC_1,

OFF_O0OB; =
{ (REFS); — ((OFF2)/° 4 (SIZE),)

(b) 1r TERN; =1 THEN
OFF_0OB; = 0

(OFF2)l° + ((SIZE); — 1) — (REFS); = ACC_1,;
(REFS); — ((OFF2))° 4 1) ACC_2;

(¢c) ¥ TERN; =2 THEN
OFF_OOB; = 1
(OFF?); — (REFS); = ACC_1,

Note that ACC_1; and ACC_2; don’t play a “functional role”, their sole purpose is in establishing
TERN;. Note furthermore that NIB_1 and NIB_2 remain unused at this point.

2.4.7 Type 4 when TERN =0

Preprocessing

This is essentially a subcase of TERN = 1.

67

2.4.8 Type 4 when TERN =1

Preprocessing

Type 4 instructions with TERN = 1 are the most complex to arithmetize. As usual, we jump straight

to the last preprocessing step, i.e.

‘All constraints in this subsection assume IS_p; =0 AND IS__p;41 =1

Note that in the present case (TERN = 1) preprocessing takes 3 lines. The integer whose bytes are
being accumulated are small (having passed smallness testing in the Memory Expansion Module or
by virtue of TERN = 1) i.e. they all fit into 3 bytes. Also notice that ACC_1 and ACC_2 are already

“used up”. In what follows we start with ACC_3, ACC_A4, ...

Euclidean divisions. ACC_3, ..., ACC_8 target quotients of certain euclidean divisions and NIB_3,

., NIB_8 target the associated remainders:

(REFO); + (OFF2); = 16-
(REFO); + ((REFS); — 1) = 16-
(OFF1); = 16-
(OFFY); + (((REFS); — (OFF2);) —1) = 16-
(OFFY); + ((REFS); — (OFF2);) = 16-
(OFF1); + ((SIZE); — 1) = 16-

ACC_3; + NIB_3;
ACC_4, + NIB_4,
ACC_5, + NIB_5;
ACC_6, -+ NIB_6,
ACC_7, + NIB_7,
ACC_8; + NIB_S;

Note that ACC_7, and NIB_7, could easily deduced from ACC_6; and NIB_6;; we don’t do it
and resort to this generic way of establishing ACC_7, and NIB_7; to keep things simpler.

Comparisons. We justify the bit columns [1] and [2] and use up NIB_1 and NIB_2 in the process:

(NIB_5; —NIB_3;) - (2-[1]; — 1) — [1];
{ (NIB_4; —NIB_6,) - (2-[2]; —1) — [2]s

Thus

NIB_1,
NIB_2,

[1]=1 <= NIB_5>NIB_3
[2l]=1 <= NIB_4>NIB_6

Workflow parameters. We set the total number of micro-instructions:

TOTY = (ACC_4;,—ACC_3;)+1
+(ACC_8, — ACC_T7,) + 1

We also set the total number of instructions involving actual reads:

TOTRD; = (ACC_4; — ACC_3,) + 1

Let us also write, just this once,

TOTPD; = (ACC_8; — ACC_7,) + 1

We emphasize that we don’t need a dedicated TOTPD column , but it’s convenient to understand
the meaning of [4] below. The interpretation is straightforward: TOTPD is the number of target

68

RAM limbs that will be affected by 0 padding. We set some binary flags:

1r NIB_3; = NIB_5; Tuen ALIGNED; =1
1w NIB_3; # NIB_5; THEN ALIGNED; =0

1r TOTRD; =1 THEN [3]; =1
I TOTRD; # 1 THEN [3]; =0

¥ TOTPD; =1 THEN [4]; =1
IF TOTPD; # 1 THEN [4]; =0

1 NIB_6;, = 15 THEN [5]; =1
ir NIB_6; # 15 THEN [5]; =0
1 NIB_8; = 15 THEN [6]; =1
ir NIB_8; # 15 TuEN [6]; =0

We also establish [7]. This plays an analoguous role for type 4 instructions as [5] played for type
2 instructions: in case of a single read (i.e. TOTRD; = 1i.e. [3] = 1) it distinguishes between the
two writing methods. Either a source chunk is written to a suffix and prefix of two consecutive
target limbs (< (NIB_5 + (NIB_4 —NIB_3+ 1) - 1) > 16) or a source chunk is written to a
single target limb replacing a chunk thereing (<= (NIB_5 + (NIB_4 —NIB_3 + 1) — 1) < 16)

1. 17 [3] = 0 THEN [7] =0

2. 1F [3] =1 THEN
NIB_5 + (NIB_4 — NIB_3) — 16 - [7]; = NIB_9

In other words:

1. ALIGNED =1 <= the data source and RAM target offsets are aligned;

2. [3] =1 <= precisely one limb of call data, return data or bytecode is read;
3. [4] =1 <= precisely one target RAM limb has to be zero padded,;
4. [5] =1 < NIB_6 =15 < NIB_7 =0 <= the first padding operation starts on a fresh

limb with a byte offset of 0;

5. [6] =1 <= NIB_8 =15 <= the final padding operation ends with a byte offset of 15;

Source and target limb and byte offsets We set source and target limb and byte offsets

SLO;41 = SLO; = ACC_3,
SBO,.1 = SBO, = NIB_3,
TLOZ‘J’,l == TLOZ - ACC_5,L
TBO;11 = TBO; = NIB_5;

Note that we don’t require source offsets: there is no source, we are simply writing zeros to the
target context’s RAM. Note furthermore that the constraint TLO;; = TLO; is implicit in the
upcoming set of constraints. We include it purely for the reader’s convenience.

69

Micro-instruction writing: updating TOTRD

We distinguish several cases. A complication arises from the fact that midway there is a regime change.
We initially read data and write the micro-instructions that will surgically insert the relevant data into
the target context’s RAM. This regime holds for as long as TOTRD;_; # 0. The regime change takes
place as we transition from row iy to row ig + 1 where ig is the row index where TOTRD where hits
zero for the first time (within that (MMUQ)). At that point the micro-instructions the zk-evin writes
switch from data extracting micro-instructions to zero padding micro-instructions. Note: we
don’t use the notation iy anywhere else. The transition condition will be couched in terms of TOTRD

‘AH constraints in this subsection assume IS_ u; = 1

We begin by fixing the expected behaviour of TOTRD
1. 1F TOTRDl_l 7& 0 THEN TOTRDz = TOTRDi_l — |57/,(,i_1
2. 1F TOTRD;_; =0 THEN TOTRD; =0

In other words: for the first micro-instruction TOTRD duplicates the value that was established in
precomputation. Beyond that point it decreases monotonically by 1 with every micro-instruction until
it hits 0. We deal with the micro instructions in the first phase, i.e. reading actual data.

Micro-instruction writing: data extraction

‘All constraints in this subsection assume IS_p; =1 and TOTRD;_; # O‘

We begin with the case where there is a single “data writing” operation, i.e. [3]; = 1:
1. 1F [3]; =1 THEN :

(a) SLO,; and SBO; are already set;
(b) TLO; and TBO; are already set;
(¢) SIZE; = NIB_4; — NIB_3; + 1;
(d) 1r [1]; = 0 THEN

w °PRE; = typed4CC THEN plINST; = ExoToRamSlideChunk
i °PRE; = typed4RD THEN plNST; = RamToRamSlideChunk
1 (INFO) = 0 THEN uINST; = RamToRamS1ideChunk

1w °PRE; = type4CD THEN
1IF (INFO) =1 THEN uINST; = ExoToRamSlideChunk

(e) 17 [1]; =1 THEN
i. 1F [7]; =0 THEN

ir PRE; = type4CC THEN uINST; = ExoToRamS1ideChunk
v °PRE; = typed4RD THEN pINST; = RamToRamSlideChunk

IF (INFO) = 0 THEN pINST,; = RamToRamSlideChunk

v °PRE; = type4CD THEN
IF (INFO) =1 THEN pINST,; = ExoToRamSlideChunk

ii. 1 [7]; = 1 THEN

v °PRE; = type4CC THEN pINST; = ExoToRamSlideOverlappingChunk

v °PRE; = type4RD THEN pINST; = RamToRamSlideOverlappingChunk
1 (INFO) = 0 THEN pINST; = RamToRamSlideOverlappingChunk

17 “PRE; = type4CD THEN <) a ’ anTonamsLLaeTver Jappinghaun
IF (INFO) = 1 THEN puINST; = ExoToRamSlideOverlappingChunk

70

(f) 1 [7]; = 0 THEN
TLO; 41 = [5]; + TLO;
TBO;+1 = NIB_7,
i.e. if the one operation touches a single limb in the target RAM then we move to the next
limb iff NIB_7;, =0 ie. [5]; =1

(g) 17 [7]; =1 THEN
TLO;41 = 1+ TLO;
TBO;+1 = NIB_7;

i.e. if the one operation touches a two limbs in the target RAM then necessarily we move

to the second limb that we just modified.

Recall that [3]; = 1 corresponds to a the single surgery involving actual data (i.e. at the last
row of preprocessing, which is row ¢ — 1, TOTRD;_; = 1) so that in the current row (i.e. row 1)
TOTRD; = 0. In other words, the constraints in this block apply for a single row.

We next move to the case where there is are multiple “actual data” writing micro-instructions. We
begin with the case where there is a single writing operation:

2. 1F [3]; = 0 we start with the updates to TLO:
(a) 17 IS_p;—1 = 0 THEN
TLO;41 = TLO; + (AUGNEDZ + [[1]]1)
Note that ALIGNED; + [1]; =1 <= NIB_5 > NIB_3
(b) 1FIS_p;—1 =1S_p; =1S_p;41 = 1 THEN

TLO;41 = TLO; + 1

The middle condition IS_pu; = 1 is redundant (it is part of the section wide assumptions)
but we include it for clarity;

The previous two constraints signify that if NIB_5 > NIB_3 then TLO; grows by one with every
micro instruction. When NIB_5 < NIB_3 the first limb in the target is modified by two successive
micro-instructions. The above constraints capture this.

(¢) 17 IS_p;—1 = 0 i.e. we deal here with the first micro-instruction:

i. SIZE; = (15— NIB_3;) +1 We could put 16 ...
ii. 1F [1]; = 0 THEN

1w °PRE; = type4CC THEN pulNST; = ExoToRamSlideChunk
17 “PRE; = type4RD TiEN uINST; = RamToRamS1ideChunk
IF (INFO); = 0 THEN pINST; = RamToRamS1lideChunk

i °PRE; = type4CD THEN
IF (INFO); =1 THEN pINST; = ExoToRamSlideChunk

iii. 17 [1]; =1 THEN

1w °PRE; = type4CC THEN pINST; = ExoToRamSlideOverlappingChunk
¥ °PRE; = type4RD THEN pINST; = RamToRamSlideOverlappingChunk

1F (INFO); = 0 THEN ulNST; = RamToRamSlideOverlappingChunk

r °PRE; = type4CD THEN
1Ir (INFO); =1 THEN pINST; = ExoToRamSlideOverlappingChunk

(d) r IS_p;—1 =1 AND TOTRD;_; # 0 THEN

71

ii.

iii.

iv.

. SBO; =0

TBO; = NIB_5,+SIZE; —16- (ALIGNED; +[1];). Note that by construction, and for type
4 instructions, ALIGNED; and [1]; measure disjoint events. Thus ALIGNED; + [1]; =
ALIGNED; + [1]; — ALIGNED; - [1]; = ALIGNED; V [1]; is binary. Its interpretation is
ALIGNED; + [1]; =1 <= NIB_5; > NIB_3,.

IF TOTRD; # 0 THEN

A. SIZE; = 16 i.e. we copy full limbs,

B. 17 ALIGNED; =1 THEN pINST; = RamToRam

1w °PRE; = typedCC THEN plINST; = ExoToRam
ir “PRE; = type4RD THEN uINST; = RamToRam
IF (INFO); = 0 THEN pINST,; = RamToRam

1w °PRE; = type4CD THEN
17 (INFO); = 1 THEN uINST; = ExoToRam

C. 1¥ ALIGNED; =0

1w °PRE; = type4CC THEN uINST; = ExoToRamSlideOverlappingChunk
¥ “PRE; = typed4RD THEN uINST, = RamToRamSlideOverlappingChunk
1F (INFO); = 0 THEN pINST; = RamToRamSlideOverlappingChunk

v “PRE; = type4CD THEN
1F (INFO); = 1 THEN uINST; = ExoToRamSlideOverlappingChunk

1IF TOTRD; = 0 THEN
A. SIZE; = NIB_4, + 1
B. 1F [2]; = 0 THEN

1# °PRE; = type4CC THEN uINST; = ExoToRamS1ideChunk
¥ “PRE; = type4RD THEN uINST; = RamToRamS1ideChunk

1F (INFO); = 0 THEN uINST; = RamToRamS1ideChunk

v °PRE; = type4CD THEN
Ir (INFO); =1 THEN pINST; = ExoToRamSlideChunk

C. 1r [2]; =1 THEN

1w °PRE; = type4CC THEN pINST; = ExoToRamSlideOverlappingChunk
1w °PRE; = type4RD THEN uINST, = RamToRamSlideOverlappingChunk

1F (INFO); = 0 THEN uINST; = RamToRamSlideOverlappingChunk
1r (INFO); =1 THEN pINST; = ExoToRamSlideOverlappingChunk

1w °PRE; = type4CD THEN {

D. Below we update TLO for the padding phase of the macro-instruction decoding.

17 [2]; = 1 THEN { Pé%ii z }\IETI;OZ

in other words, if NIB_6 < NIB_4 then the final data writing micro-instruction
(TOTRD;—; # 0, TOTRD; = 0) writes on two consecutive limbs (TLO; and 1 +
TLO;) and hence in the first padding operation we will be writing on 1 + TLO;.

1F [2]; = 0 THEN { TBO,,; — NIB_7,

Otherwise the final data writing micro-instruction wrote data within the same limb
(with offset TLO;). Actually, the two events {[2]; = 1} and {[5]; = 1} are
mutually exclusive. So we could (and should) replace this with a single
constraint TLO;; = ([2]; + [5]:) + TLO,.

72

Micro-instruction writing: zero padding

We now start with the padding phase of the micro-instruction writing.

‘All constraints in this subsection assume IS_p; =1 and TOTRD;_; = 0‘

We again distinguish two cases: the case where a single limb in the target context’s RAM needs to be
padded (i.e. TOTPD; =11ie. [4]; = 1) and the case where at least 2 (consecutive) limbs in the target
context’s RAM need to be padded (i.e. TOTPD; > 1 i.e. [4]; = 0). Note that we use the TOTPD;
name again. We refer the reader to 2.4.8 for the definition and interpretation of this quantity.

In the first case there is only one interesting scenario: when NIB_7 = 0 and NIB_8 = 15. In this

case we can perform a fast “limb killing” operation. Otherwise we need to excise a chunk of bytes from
a RAM limb.

1. 1F [4]; = 1 THEN

(a) we have already set TLO; and TBO;;
(b) out of precaution, we set SLO; = SBO; = 0;

(c) ¥ ([[5]]i =1 anD [6] = 1) THEN pINST; = KillingOne

(d) 1F ([[5]]1‘ =0 or [6] = O) THEN
i. TBO; = NIB_7,
ii. SIZE; = NIB_8, — NIB_7, +1
iii. pINST,; = RamLimbExcision
In the second case we write to at least two words in the target context’s RAM. There is a first
write that may be fast (if NIB_7 = 0 i.e. if [5]; = 1) otherwise it’s excision of a suffix, it is followed up

by 0 or more full limb killings (which are fast), and the final limb is similar to the first (if NIB_8 = 15
ie. if [6] = 1.)

1. 1F [4]; = 0 THEN
(a) 1F TOTRD;_2 # 0 THEN
TBO,; = NIB_7;
SIZE; =16 — NIB_7;

INST. — 4 1F [5]; =1: KillingOne
a ‘) [5]i =0: RamLimbExcision

Note that the constraint “TBO; = NIB_7,” is redundant: we have already imposed as
much at the end of the data writing phase; we repeat it here for sheer convenience. Note
furthermore that we really are in the case where TOTRD;_5 = 1, TOTRD;,_; = 0 and
TOTRD; = 0.
(b) 1r TOTRD;_5 =0 THEN

i. TLO;, =TLO;_; +1

ii. TBO; =0

iii. 17 TOTY # 0 THEN pINST; = KillingOne

iv. 1r TOTY =0 THEN

SIZE; = NIB_8; + 1
1INST, = RamLimbExcision
IF [6]; = 1 THEN pINST; = KillingOne

IF [6]; =0 THEN

73

2.4.9 Type 4 when TERN = 2

Preprocessing

Type 4 instructions with TERN = 2 are the simplest Type 4 RAM macro-instructions to decompose
into a sequence of micro-instructions. They correspond to grossly out of bounds offsets. The net effect
on memory is just to write (SIZE) many zeros starting at offset (OFF!). As per usual, we jump straight
to the last preprocessing step.

All constraints in this subsection assume IS_pu; =0 AND IS__p;4q1 =1

Note that in the present case (TERN = 2) preprocessing takes 16 lines. Thus the accumulators below
have accumulated 16 bytes. Nonetheless, the integers whose bytes are being accumulated are small
(having passed smallness testing in the Memory Expansion Module) i.e. they fit into 3 bytes. ACC_3
and ACC_4 are thus small (i.e. 3 byte integers.) Note furthermore that we don’t use ACC_2 (even
though it is “unused and available” in this execution branch.)

Euclidean divisions. ACC_3 and ACC_4 target quotients of certain euclidean divisions and NIB_3
and NIB_4 target the associated remainders:

(OFF1),
{ (OFFL), + ((SIZE); — 1)

16 - ACC_3, + NIB_3;
16 - ACC_4, + NIB_4;

Workflow parameters. We set the total number of micro-instructions:
TOT! = ACC_4; — ACC_3; +1

We set some binary flags:
IF TOT! =1 THEN [1]; =1
1r TOTY # 1 thEN [1]; =0

IF NIB_3; =0 THEN [3]; =1
1F NIB_3; # 0 THEN [3]; =0

IF NIB_4; = 15 TuEN [4]; =1
1F NIB_4; # 15 THEN [4]; =0

In other words: the (MMUQO)-constant binary column [1] lights up precisely when the RAM
macro-instruction decomposes into a single micro-instruction; the (MMUO)-constant binary
columns [3] and [4] aren’t all that important; their main purpose is to indicate, when [1] = 0,
i.e. when the RAM macro-instruction decomposes into at least 2 micro-instructions, whether the
first and final instructions are fast or not.

We set source and target limb and byte offsets

ACC_3,

TBO,;1 = TBO; = NIB_3,

{ TLOH_l = TLOZ

Note that we don’t require source offsets: there is no source, we are simply writing zeros to the
target context’s RAM. Note furthermore that the constraint TLO,;; = TLO; is implicit in the
upcoming set of constraints. We include it purely for the reader’s convenience.

74

Micro-instruction writing

We distinguish several cases. Note that

All constraints in this subsection assume IS_ p; =1

1. TLO; = TLO;_1 + IS_pt;—1: the source limb offset grows by 1 with every instruction, regardless
of anything else;

2. 1F [1]; =1 THEN

(a) TLO; and TBO; were already set
(b) 1F [3]; =1 AND [4]; =1 THEN pINST,; = KillingOne
(¢) 1 [3]; =0 ORr [4]; =0 THEN

SIZE; = (SIZE);
uINST; = RamLimbExcision

Recall that the case [1]; = 1 corresponds to establishing TOT" = 1 during the precomputation
phase (i.e. a single surgery is required to carry out the macro-instruction.) This single constraint
is sufficient.

3. 1F [1]; = 0 the situation is more complex. By definition the macro-instruction is converted to
TOT" > 2 micro instructions, the first and last of which may be excisions, and all intermediary
ones being replacing full RAM limbs with zero. This logic is captured below:

(d) 17 IS_p;—1 =0 THEN

i. 1 [3]; = 1 THEN pINST; = KillingOne, i.e. target byte offset of the first micro-
instruction is zero and we perform at least 2 micro-instructions: the first operation
thus erases an entire limb;

ii. 1r [3]; =0 THEN
A. SIZE; = (15— NIB_1;) + 1
B. pINST, = RamLimbExcision

In other words, at the first micro-instruction can be either killing a whole limb (if [3]; = 1)
or excising a suffix (if [3]; = 0)
(e) 17 IS_p;—1 =1 THEN
i. TBO; =0 i.e. after the first micro instruction we are killing words or excising prefixes;
ii. 17 TOTY # 0 THEN uINST; =KillingOne
iii. 1F TOTY =0 THEN
A. 1F [4]; = 1 THEN pINST; =KillingOne
B. 1F [4]; = 0 THEN
SIZE; = NIB_4;
wINST; = RamLimbExcision
iv. 1r TOTY =0 THEN
A. SIZE; =NIB_2; +1
B. 1F [3]; = 0 THEN uINST; = RamToRamSlideChunk
C. 17 [3]; =1 THEN pINST,; = RamToRamSlideOverlappingChunk

75

2.4.10 Type 5

Instructions

This subsection deals with the preprocessing of Type 5 macro-instructions. There is only one such
instruction, CALLDATALOAD. We note at this point that for a CALLDATALOAD to make it to preprocessing
it must not have been dealt with by the Rare Checks Module. As a consequence its offset parameter

will always satisfy
0 < OFFSET < CDS.

so that at least one byte of call data will be written to stack (with appropriate zero padding if necessary
i.e. if CDS < OFFSET + (32 —1).) The number of “actual” bytes to copy is the first thing we establish
below. This number always lives in the range {1,2,...,32} (i.e. 0 is excluded by what precedes.)

It might come as a surprise that there is an entire type for a single RAM instruction, especially
given CALLDATALOAD’s apparent kinship with MLOAD. From the point of view of the zk-evm presented
in these notes the instructions are very different. We provide further motivation for this this design
choice in the chapter on RAM data processing; for now note that while is only one type 5 instruction,
there are two different scenarios to consider. The first one is when the current call stack depth
is > 1. In this case call data is located in the present context’s caller’s RAM. In this case the
CALLDATALOAD macro-instruction will be converted into a single “RAM to stack” micro-instruction.
The second case is that when call stack depth is = 1. In this case the call data (transaction call
data, really) must be extracted from a public commitment. Retrieval is more complex in this case
since, as explained in the chapter on RAM data processing, the zk-evm must load the 2 or 3 relevant
limbs, temporarily store them in the 0** context’s RAM (overcoming its memorylessness by means of
the (EXCEPTIONAL_RETENTION_FLAG)) and only then can it start writing to the imported stack
value. In this case the CALLDATALOAD macro-instruction will be converted into a series of 3 “loading
from exogenous data” micro instruction and a single “RAM to stack”.

We further note that the public commitment to Transaction Calldata enforces the following padding
scheme: (1) zero pad to the next multiple of 16 (2) then add two zero limbs. In other words, beyond
the final byte of actual call data there are at least 32 bytes of zero padding. Given that when a
CALLDATALOAD instruction which makes it to preprocessing is reading at least one actual byte from call
data, the zk-evm will always be able to load 3 consecutive limbs of exogenous data from transaction
call data without going out of bounds (and breaking the plookup connection.) We note at this point
that we could have been fancier and only load 1, 2 or 3 limbs from transaction call data depending on
whether OFFSET + 16 > CDS or not. This optimization comes at further complication in the RAM
preprocessor and saves 1 or 2 rows in the RAM data processor.

Preprocessing

As per usual, we jump straight to the last preprocessing step.

All constraints in this subsection assume IS_p; =0 AND IS_p;01 =1

We begin establishing some parameters.
Setting OFF_OOB,. We set OFF_OOB; = 0, see previous discussion.
Setting context info. We set CN_T, = 0 and

IF CSD; =1 THEN CN_S, =0
ir CSD; # 1 THEN CN_S; = (CALLER);

Note that, given the micro instruction we will be writing, setting CN_T, serves no purpose and
can be omitted.

76

Establishing maximum offset. We first establish the maximum offset of a byte to be copied from
call data and the number of bytes to copy, i.e. we require that:

(2-[1]; = 1) - (CDS; — ((OFF'); +32)) + ([1]; — 1) = ACC_1,

Let write, out of sheer convenience, NBYTES; =1+ (2 [1]; — 1) - (CDS; — ((OFF!); + 32)) +
([1]; — 1) = 1+ ACC_1,. By construction

[1]: =1 <= (OFF); + (32 —1) < (CDS; — 1)
[1]; =0 <= (OFF'); + (32 —1) > (CDS; — 1)
NBYTES < {1,2,...,32}

We will be interested in finding out whether NBYTES,; < 16, NBYTES; = 16, 16 < NBYTES; < 32
or NBYTES; = 32. We thus impose

which establishes the euclidean division of ACC_1; by 16 (note that in the present case ACC_1 €
{0,1,...,31} and so the quotient is either 0 or 1). Next we establish [3]:

1F NIB_2; # 15 THEN [3]; =0
17 NIB_2, = 15 THEN [3]; =1

In other words,

[2]: | [3]:
0 0 <—— 0 < NBYTES; <16
0 1 = NBYTES; = 16
1 0 <= 16 < NBYTES; < 32
1 1 = NBYTES; = 32

Establishing TOT". We impose that

1r CSD; =1 TueN TOTY =4
1r CSD; # 1 THEN TOTH =1
NBYTES; € {1,2,...,32}

as already mentioned, a CALLDATALOAD instruction in a root context requires 3 loads from trans-
action call data.

Establishing alignment. We establish the euclidean division (by 16) of the absolute offset where
reading call data begins

CDO; + (OFF!'); = 16 - ACC_3; + NIB_3;
We define associated binary flags

1 NIB_3;, = 0 TueN ALIGNED,; =1
¥ NIB_3, # 0 THEN ALIGNED; =0

Establishing [4]. The bit column [4] is used to distinguish between the two ways of producing a limb
containing both data and padding in the non aligned case. It only matters if ALIGNED; = 0. We
therefore ask that 1# ALIGNED; = 0 THEN

(2-[45: = 1) - ((NIB_2; +1) = (15 = NIB_3; + 1)) — [4]; = NIB_4,

7

In other words, given that ALIGNED; = 0 we have

[4]; =1 < (15— NIB_3, + 1) < (NIB_2; + 1
[4]; =0 < (15— NIB_3; +1) > (NIB_2; +1

Establishing source and target offsets. No surprise here:

SLO, = SLO;:; = ACC_3,
SBO, = SBO;y; = NIB_3;

TBO; = TBO;41 = 0

Micro-instruction writing

We move on to micro-instruction writing.

‘All constraints in this subsection assume IS_pu; =1 ‘

We first consider the case CSD; # 1 i.e. of call data inherited from a CALL-type instruction: there is
nothing left to do (besides the writing the one (and only) micro-instruction). We defer it. We now
consider the case CSD; = 1 i.e. the case of transaction call data

1. 1r CSD; =1 THEN
(a) 1F IS_p;—1 = 0 THEN

uINST; = StoreXinAthreeRequired
uINST; 11 = StoreXinB
#INST,; 12 = StoreXinC

(b) We set limb and byte offsets, exo data flags, sizes and the EXCEPTIONAL_RETENTION_FLAG:

SLOz = SLOi—l + |Siﬂi_1
1F TOTY # 0 THEN SBO; = SBO;-,

ERF; =1

X_TXCD, = 1

SLO; =0

SBO; = SBO;_;
1Ir TOT! =0 THEN < ERF; =0

X_TXCD, = 0

SIZE; = 1 + NIB_2,

Note that updates to the source offset are simple initially: it increase linearly. This trend
ends with the final micro-instruction which resets it to 0 includes a final update to the
source limb offset

Now that parameters are set we can move on to writing the final micro-instruction. At this point there
is no differnence between the two cases CSD; = 1 and CSD; > 1. The only question that matters is:
are offsets aligned or not?

1. 1r TOT! =0 THEN

78

(a) 17 ALIGNED; =1 THEN
i 1r ([[2]]i =0 AnD [3]; = 0) THEN

FirstPaddedSecondZero
1+ NIB_2;

SIZE;

ii. 7 ([[2]]1» =0 anD [3]; = 1) THEN puINST; = PushOneRamToStack;
iii. 1¢ ([[2]]1» =1 anp [3]; = 0) THEN

uINST; = FirstFastSecondPadded
SIZE; = 1+ NIB_2;

iv. 1F ([[2]]i =1 AND [3]; = 1) THEN puINST; = PushTwoRamToStack;
(b) 1r ALIGNED; = 0 THEN
i. 17 ([[2]],- =1 AND [3]; = 1) THEN pINST,; = NA_RamToStack_3To2Full

i, ([[2]]i =1 aND [3]; = O) THEN

IF [4]; =1 THEN pINST; = NA_RamToStack_3To2Padded
IF [4]; = 0 THEN pINST; = NA_RamToStack_2To2Padded

In both cases, SIZE; =1 + NIB_2;.
iii. 1F ([[2]]Z =0 AND [3]; = 1) THEN puINST; = NA_RamToStack_2TolFullAndZero

iv. ¢ ([[2]]i =0 AND [3]; = O) THEN

1F [4]; = 1 THEN uINST; = NA_RamToStack_2TolPaddedAndZero
1F [4]; = 0 THEN upINST; = NA_RamToStack_1TolPaddedAndZero

In both cases, SIZE; =1 + NIB_2,.

79

Chapter 3

MMIO

3.1 Outline of the RAM arithmetization

3.1.1 RAM instructions

The mmu module deals with the following instructions:

1. SHA3 8. RETURNDATACOPY 15. CALL

2. MLOAD 9. LOGO 16. CALLCODE

3. MSTORE 10. LOG1 17. RETURN

4. MSTORE8 11. LOG2 18. DELEGATECALL
5. CALLDATALOAD 12. LOG3 19. CREATE2

6. CODECOPY 13. LOG4 20. STATICCALL
7. EXTCODECOPY 14. CREATE 21. REVERT

3.1.2 Column descriptions

Throughout this document we use the word limb to designate a 16-byte integer.

The RAM data processor has, at all times, access to precisely 3 values (limbs) from RAM. These
values can be chosen from distinct execution contexts, including the 0" execution context which plays
a special role. To specify a “value in RAM” we thus require a tuples consisting of (a) an execution
context (b) a limb offset in RAM (c) the limb (i.e. value) stored at that offset. The arithmetization
requires us to add to these (d) a potentially udpated value of that limb and (e) bytes that potentially
spell out the byte decomposition of the limb currently in RAM (i.e. before any potential update). This
is the purpose of the following columns. Since the RAM data processor can access three RAM slots
there are three such quintuples. We give more details below.

Three counter-constant columns containing execution context numbers:

1. CONTEXT_A; abbreviated to CN_A;
2. CONTEXT_B; abbreviated to CN_B;
3. CONTEXT_C,; abbreviated to CN_C;

Three counter-constant columns containing limb offsets within the corresponding execution context’s
RAM:

80

4. INDEX_A: limb offset in the RAM of context CN_A,;

5.

INDEX_B: limb offset in the RAM of context CN_B;

6. INDEX_C: limb offset in the RAM of context CN_C;

Three counter-constant columns containing the limbs currently stored at the given offsets inside the
corresponding execution context’s RAM:

7. VALUE_A: (limb) value currently in CN_A’s RAM at INDEX_A; abbreviated to VAL_A;

8.
9.

VALUE_B: (limb) value currently in CN_B’s RAM at INDEX_B; abbreviated to VAL_B;
VALUE_C: (limb) value currently in CN_C’s RAM at INDEX_C; abbreviated to VAL_C;

Three counter-constant columns containing potentially updated values of the limbs currently stored at
the given offsets inside the corresponding execution context’s RAM:

10.
11.
12.

VALUE_A_NEW; updated value in CN_A’s RAM at INDEX_A; abbreviated to VAL_A";
VALUE_B_NEW; updated value in CN_B’s RAM at INDEX_B; abbreviated to VAL_B";
VALUE_C_NEW,; updated value in CN_C’s RAM at INDEX_C; abbreviated to VAL_CY;

Three byte columns which may contain the byte decompositions of VAL_A, VAL_B and/or VAL_C
(depending on whether they are required for the present computation):

13.
14.
15.

BYTE_A; byte columns;
BYTE_B; byte columns;
BYTE_C; byte columns;

We also require three accumulator columns which may witness these byte decompositions:

16.
17.
18.

ACC_A: if (FAST) = 0 accumulates the bytes of the BYTE_A columun;
ACC_B: if (FAST) = 0 accumulates the bytes of the BYTE_B column;
ACC_C: if (FAST) = 0 accumulates the bytes of the BYTE_C column;

The following are columns imported from the RAM preprocessor. Colums that are imported
from the RAM preprocessor are distinguished by angular brackets as in (X). All imported columms
are counter-constant.

19.

(MICRO_RAM_STAMP): contains the RAM micro instruction stamp; abbreviated to (uRST);

20. (Y“MICRO_INSTRUCTION): contains the RAM micro instruction of the current (uRST); abbre-

21.

22.

23.

viated to (uINST);

(CONTEXT_SOURCE): context number of the context whose RAM may be used as a source of
limbs; abbreviated to (CN_S);
):
(

(CONTEXT_TARGET): context number of the context whose RAM may be used as a target of
limbs; abbreviated to (CN_T);

(IS_INIT): binary flag that is smart-contract-number constant ; used to recognize the RETURN
instructions whose return data is deployed bytecode; easily set when doing a CREATE(2) instruc-
tion; for contract deployment the RAM can’t detect it, it’s the ROM that knows,
the stack takes its instructions from the ROM and so the stack can know, too, and
from the stack the RAM can know, too.

81

VAL_A

VAL B

VAL C

VAL C_NEW

Figure 3.1: The diagram above contains all the intuition there is to convey about context numbers,
indices, values and updated values. Every execution context (identified by its context number) has
its own RAM, the data in RAM is addressed via an index € {0,1,...} which for the purposes of the
zk-evm always is a 4-byte integer as larger offsets are rejected before getting this far. The data itself is
packaged as “limbs”: 16-byte integers. Instructions may change 0, 1, 2 or even three of the available
RAM limbs at any point in time. In the above only the VALUE_C is modified.

24.

25.

26.

27.

28.
29.

30.

(SOURCE_LIMB_OFFSET): this imported column contains the limb offset of the first limb to
read from / write to in (CN_S)’s RAM; abbreviated to (SLO)

(TARGET_LIMB_OFFSET): this imported column contains the limb offset of the first limb to
read from / write to in (CN_T)’s RAM; abbreviated to (TLO)

(SOURCE_BYTE_OFFSET): this imported column contains the byte offset within the limb to
read from / write to in (CN_S)’s RAM; with values in {0, 1,...,15}; abbreviated to (SBO);

(TARGET_BYTE_OFFSET): this imported column contains the byte offset within the limb to
read from / write to in (CN_T)’s RAM; with values in {0, 1,...,15}; abbreviated to (TBO);

(SIZE): an imported column containing a “size” parameter used by certain limb surgeries;

(FAST): binary flag indicating whether a micro instruction is fast (i.e. occupies a single line in
the RAM data processor) or slow (i.e. occupies 16 consecutive lines in the RAM data processor.)

(EXCEPTIONAL_RETENTION_FLAG): a binary flag that signals exceptional behaviour of the
0" execution context’s RAM; abbreviated to (ERF).

The 0" execution context is a ficticious execution context and its RAM is subject to no internal
consistency constraints. Raising the (EXCEPTIONAL_RETENTION_FLAG) changes this temporarily
and allows the arithmetization to use the 0" execution context’s RAM as temporary storage.

31.
32.
33.
34.
35.
36.

(STACK_VALUE_HIGH): abbreviated to (VAL");
(STACK_VALUE_LOW): abbreviated to (VAL'");

BYTE_V": abbreviated to ;

BYTE_V'": abbreviated to :

ACC_V": if (FAST) = 0 accumulates the bytes of the BYTE_V" column;
ACC_V": if (FAST) = 0 accumulates the bytes of the BYTE_V'® column;

82

Given the stack pattern of instructions triggering the present module and using stack inputs / outputs
(i.e. MLOAD, MSTORE, MSTORES and CALLDATALOAD) (VAL") and (VAL') are imports of ,VAL" and
4VAL" respectively.

The RAM interacts with other data sources: the stack, logs, the ROM, transaction call data and
the data to hash. The RAM module has, accordingly, access to values coming from the stack but also
from exogenous data sources i.e. logs, ROM, transaction call data. The following two columns
are counter-constant imported columns containing stack values: These columns only play a role for
MSTORE, MSTORE8, MLOAD and CALLDATALOAD: for MSTORE and MSTORES, VAL_Shi and VAL_S > contain
the high and low part of the argument from stack to be stored in RAM; for MLOAD and CALLDATALOQAD,
VAL_S hi and VAL_S o contain the high and low part of the value retrieved from RAM or the call data
respetively; offsets (i.e. where to store or from where to retrieve) are handled elsewhere. We come to
exogenous data columns. These columns contain data from exogenous sources which we define as
being either

o the stack, e log data,

e the rom, e transaction input data.

Note that transaction input data can (and does) appear both in the first batch of columns and exoge-
nous data columns. This data comes in

37. (EXO_IS_ROM): imported binary flag column that lights up whenever the micro instruction
requires exogenous data from ROM; abbreviated to (X_ROM);

38. (EXO_IS_LOG): imported binary flag column that lights up for all micro instructions unfolding
a LOGO-LOG4 macro-instruction; abbreviated to (X_LOG);

39. (EXO_IS_SHAZ3): imported binary flag column that lights up for all micro instructions unfolding
a SHA3 instruction; abbreviated to (X_SHA3);

40. (EXO_IS_TXCD): imported binary flag column that lights up whenever the micro instruction
requires exogenous data from transaction call data; abbreviated to (X_TXCD);

41. INDEX_X: contains the limb offset of exogenous data;
42. (VAL_X): limb column; contains exogenous data;
43. BYTE_X: byte column; may contain the byte decomposition of (VAL_X);
44. ACC_X: if (FAST) = 0 accumulates the bytes of the BYTE_X column;
We introduce some book-keeping columns for memory operations involving call data and return data:

45. TRANSACTION_NUMBER: transaction number; imported form the main execution trace; ab-
breviated to TXNUM;

We now introduce some columns that are of use in producing proofs but aren’t meaningful outside
of that.

46. “binary plateau” columns [1], [2], [3], [4], [5];
47. “accumulator” columns ACC_1, ACC_2, ACC_3, ACC_4, ACC_5, ACC_¢;
48. “powers of 256”7 columns POW_256_1 and POW_256_2;

49. COUNTER: a column that either hovers around 0 or counts up from 0 to 15 and resets to 0; used
for slow memory operations (i.e. when (FAST) = 0) when byte decompositions are needed;

83

The section on consistency constraints introduces further columns required for checking “execution
context metatdata consistency” as well as for “memory consistency”.

The RAM pre-processor converts RAM instructions into a sequence of RAM micro instructions.
The RAM data processor only knows how to deal with micro instructions. Micro instructions can be
fast ((FAST) = 1) or slow ((FAST) = 0). Fast micro instructions take up exactly one row in the RAM
data processor’s execution trace. Slow micro instructions take up exactly sixteen rows in the RAM
data processor’s execution trace. RAM micro instructions can modify 1, 2 or even 3 limbs at once
through various forms of limb surgery. These limbs may be in RAM, imported from the stack or
part of exogenous data. The modification can use as inputs 1, 2 or even 3 limbs taken from RAM,
the stack or exogenous data. Limb surgeries (micro instructions that modify limbs on a byte level)
are determined by their (data) source, (data) target, a surgery pattern and an offset and potentially a
size. The micro instruction, the source and target, the offsets and the size (if any) are handed down
to the RAM data processor from the pre-processor. Offsets are actually given in terms of a limb offset
and a byte offset determined by euclidean division of the underlying offset by 16:

offset = 16 - limbOffset 4 byteOffset, byteOffset € {0,1,...,15}.

The purposed of the following columns is to transmit these data.

50. (SOURCE_LIMB_OFFSET): limb offset € N of the first (and potentially only) limb used as a
byte source to modify one or more target limbs; abbreviated to (SLO);

51. (SOURCE_BYTE_OFFSET): byte offset € {0,1,...,15} of the first byte in the first (and poten-
tially only) source limb used to modify one or more target limbs; abbreviated to (SBO);

52. (TARGET_LIMB_OFFSET): limb offset € N of the first (and potentially only) target limb to be
modified; abbreviated to (TLO);

53. (TARGET_BYTE_OFFSET): byte offset € {0,1,...,15} of the first byte in the first (and poten-
tially only) target limb to be modified; abbreviated to (TBO).

3.2 Specialized constraints

3.2.1 Binary constraints

Recall that a column X is binary if it satisfies: X- (1 —X) = 0. The following columns are binary: [1],

[2], [3], [4] and [5]

3.2.2 Binary plateau constraints
Suppose X, C are columns such that
o X is binary,
o C is counter-constant.
We say that the pair (X, C) satisfies the binary plateau constraints if
1. 1r C; =0 THEN X; =1,
2. 17 C; # 0 THEN
(a) 1r CT; =0 THEN X; =0,

(b) 17 CT; # 0 THEN
i. 1r CT; =C; THEN X; = X;_1 + 1,

84

X 1/1/1|---]1 X 1 1 -1 X
CT|o0|1(2]- crjo|1(2|---|c—=1]clec+1]---|15 CT|0]|1]|2

[E=y
(9}

Figure 3.2: Assuming Plateau(X, C), the above represents a counter-cycle’s worth of X when ¢ = 0,
when 0 < ¢ < 16 and when ¢ > 16.

ii. 7 CT; # C; THEN X; = X;_1,

and we use the shorthand
Plateau(X, C)

to signify that (X, C) satisfies this constraint. In practice the columns C we will consider will be locally
constant columns with values € {0,1,2,...,15}. Figure 77 represents portions (that is, counter-cycles)
of a binary column X that satisfies a binary plateau constraint w.r.t. some counter-constant column C
for different values of ¢ = C.

3.2.3 Power constraints
Let P and X be two columns with
e X binary column.
We say that the pair (P, X) satisfies a power-constraint if it satisfies the following constraints:

1. 1F (uRST); =0 THEN P =0
2. 1F (uRST); # 0 THEN
(a) 17 (FAST); =1 THEN P; =0
(b) ¢ (FAST); = 0 THEN
i. Ir CT; =0 THEN P; =1
ii. r CT; # 0 THEN
A.1F X; =0 THEN P, =P,
B. 1r X; =1 THEN P; =256 -P;_4

Power constraints will be applied in the case where X satisfies a plateau constraint so that P is initially
constant = 1 and then grows geometrically until the end of the current counter-cycle:

CT|Oo|1|2]---]ec—1 c |e+1]|---] 15
X 1 1 1
P 17171]--- 1 256 | 2562 | --- | 2567

Figure 3.3: In the picture above X satisfies the plateau constraint Plateau(X,c), 0 < ¢ < 16, and P
satisfies a power constraint Power(P, X). We have set d = 16 — c.

Its value at the end of the counter-cycle is in the set {256 | i = 0,1,...,15}. We use the short
hand

Power(P, X)

to signify that the columns P and X satisfy a power-constraint and we may say that P is pegged to
X.

85

3.2.4 Byte decomposition constraints

Suppose we have
1. a counter-constant column S,
2. and a byte column SB,
3. a third column ACC.
We say that SB computes the byte decomposition of S through ACC if
1. 1r CT; =0 TueEN ACC; = SB;,
2. 1r CT; # 0 THEN ACC; = 256 - ACC,;_1 + SB;,
3. 1r CT; =15 THEN ACC; = S;.
We encapsulate these constraints in the following relation
ByteDec(S; SB; ACC)
(Note: CT is implicit)

3.2.5 Suffix extraction
Suppose ACC, B, X are columns with

e B a byte column,

e X a binary column.

In all applications ACC will be an accumulator column, B arises as the byte decomposition of a counter-
constant column S and X satisfies a plateau constraint. We abbreviate under IsolateSuffix(ACC, B, X)
the following set of constraints

1. 1r CT; =0 THEN
F X; =0 THEN ACC; =0
r X; =1 tHEN ACC; = B;

2. 1r CT; # 0 THEN

IF X; = 0 THEN ACC; = ACC,_;
IF X; =1 tneNn ACC; = 256 - ACC;_1 + B;

3.2.6 Prefix extraction

Suppose ACC, B, X are columns with

e B a byte column,

e X a binary column.

In all applications ACC will be an accumulator column, B arises as the byte decomposition of a counter-
constant column S and X will satisfy a plateau constraint. We abbreviate under IsolatePrefix(ACC, B, X)
the following set of constraints

1. 1r CT; =0 THEN
IF X; =0 THEN ACC; = B;
IF X; =1 1HEN ACC; =0

2. 1r CT; # 0 THEN
IF X; =0 tneNn ACC; =256 - ACC;_1 + B;
IF X; =1 tHEN ACC; = ACC,_4

86

3.2.7 Chunk extraction
Suppose ACC, B, X, Y are columns with

e B a byte column,
e X and Y binary columns.

In applications (and whenever this constraint is activated) X will satisfy a plateau constraint which
jumps at C, Y will satisfy a plateau constraint which jumps at D for nonnegative integers' 0 < C < D.
Furthermore, B will contain the bytes of a (counter-constant) column S. The goal is for ACC to
accumulate the bytes B; of S for C < i < D. We abbreviate under IsolateChunk(ACC,B,X,Y) the
following set of constraints

1. 1r CT; =0 THEN
(a) 17 X; =0 THEN ACC; =0
(b) 17 X; =1 THEN ACC; = B;
2. 1F CT; # 0 THEN
(a) IF X; = 0 THEN ACC; =0
(b) 1r X; =1 THEN

i. 1IFY; =0 THEN ACC; =256 - ACC;_1 + B;
ii. 1rY; =1 1HEN ACC; = ACC;_4

3.3 Module consraints

3.3.1 Heartbeat

The columns (uRST), (FAST) and CT impose a heartbeat on the RAM module. We ask that they
satisfy the following constraints:

1. (FAST) is a binary column;

2. (uRST)o = 0;

)
3. (uRST)is1 € {(uRST);, 1+ (uRST);}%;

4. 17 (uRST); =0 THEN (FAST); =0 and CT; = 0;
5. 1F (uRST); # 0 THEN

(a) 17 (FAST); =1 THEN

CTip1 = CT, =0
(URST)it1 = 1+ (uRST);

(b) ¢ (FAST); = 0 THEN
i. 17 CT; # 15 THEN
(FAST); 11 = (FAST);
(URST)it1 = (uRST);
CTi—i—l =1+ CTZ

Inibbles, actually
%ie. ((uRST)it1 — (URST);) - ((uRST)i41 — (uRST); —1) =0

87

ii. 1Ir CT; =15 THEN

CT;41=0
6. 17 (uRST)xN # 0 THEN

(a) 1 (FAST)y = 1 no finalization contraint required,;
(b) 1r (FAST)y =0 TEN CTx =15

3.3.2 Byte decomposition constraints
We enforce the following byte decomposition constraints:
1. 1%
Qm&ni¢oAnmmwni=®
THEN

ByteDec(VAL_A, BYTE_A,ACC_A),
ByteDec(VAL_B, BYTE_B,ACC_B),
ByteDec(VAL_C,BYTE_C,ACC_C),
ByteDec((VAL") BYTE_V" ACC_V"),
ByteDec((VAL'), BYTE_V' ACC_V")

((VAL_X),BYTE_X, ACC_X)

ByteDec
Note that only some of these byte decompositions matter at any one point in time.

3.3.3 Bytehood constraints

The following columns must contain bytes:

1. BYTE_A, 3. BYTE_C, 5. BYTE_V'",

2. BYTE_B, 4. BYTE_V", 6. BYTE_X,

We thus impose a bytehood constraint on
BYTE_ABBYTE_BHBYTE_CHBYTE_V"HBYTE_V°HBYTE_X

3.3.4 Counter constancy

We say that a column X is counter-constant if it satisfies

1F (uRST); =0 THEN X; =0
P CTiy1 # 0 THEN Xip1 = X,

88

The table below depicts the behaviour of a typical counter-constant column X:

[(uRST) | (FAST) [COUNTER| X]|

0 0 0 0
0 0 0 0
0 0 0 0
.t [1t | 0 [a|]
. 2 [1 [o [b]
3 0 0 C
3 0 1 ¢
3 0 2 ¢
3 0 1 c
3 0 15 ¢
L 4 [1t | 0o [d]
L 5 [1 [0 [e|
6 0 0 f
6 0 0 f
6 0 1 f
6 0 2 f
6 0 1.4 f
6 0 15 f
7 0 0 g
7 0 1 g
7 0 2 g

We ask that all imported columns be counter constant. Note that (¢RST) and (FAST), which
are imported, are counter-constant by the set of constraints from section 8.2.1. Note that we can have
an arbitrary number of rows of all zero (imported) columns at the start of the execution trace.

3.4 Limb transplants

3.4.1 Purpose

Several of the micro instructions that the RAM data processor may be led to execute can be done
in one fell swoop i.e. don’t involve byte decompositions, cutting, grafting nor zero padding. They
simply move one (or more) limb(s) from one place to another. These operations are collectively
dubbed transplants. Transplants don’t present any difficulty in terms of their arithmetization. The
complexity lies in solely determining:

1. Which data source is the donor, which is the recipient?
2. Is exognenous data involved i.e. data from ROM, transaction call data or logs?

3. Are the stack values involved?

e~

. Does RAM undergo an update or remain identical to itself?

89

Resolving these points leads to greater conceptual clarity. It also leads to having many kinds of micro
instructions that look very similar on the surface but differ in subtle ways and are use by different
opcodes. The second point presents a conceptual challenge: some operations naturally expect 2 or 3
inputs and produce 2 or 3 outputs. However, exogenous data is only available one limb at a time. The
third points presents a similar, though greater, challenge. We made the decision to have it so that
stack values are read from and constructed as pairs rather than one by one®. This is straightforward to
implement for MLOAD, MSTORE, MSTORE8 and CALLDATALOAD performed in a subcontex of the current root
context. But CALLDATALOAD performed in the root context of a transaction poses a proper challenge.
Indeed, transaction call data, like any exogenous data, is only available one limb at a time. Yet
CALLDATALOAD, which, in accordance with the previously stated design principle, wants to produce
(VALM) and (VAL') in one go, may require up to 3 limbs from transaction call data. Note as well
that this is the only opcode the RAM deals with that (in theory) doesn’t involve the RAM at all: it’s
a direct transfer (with some potential cutting, grafting and zero padding) from transaction call data
to the stack.

One may reasonably inquire at this stage how the complications arising from limited donor limb
availability and CALLDATALOAD are related to transplants. The answer is that we introduce some trans-
plant operations to prepare the terrain for proper surgeries to come later. Dealing with CALLDATALOAD
(at the root level of a transaction) forced us to introduce an (EXCEPTIONAL_RETENTION_FLAG)
which signals exceptional behaviour of the RAM associated with the 0" execution context. As can
be read off the memory consistency constraints, the memory of the 0% execution context is subject
to no internal consistencies. The (ERF) changes this temporarily (i.e. for up to 4 consecutive micro
instructions) and allows us to use this “RAM” as a data buffer. This data buffer is then filled with
limbs harvested one by one from transaction call data in up to 3 transplant operations.

A general design principle we have adopted is that operations that “write to” exogenous data
(to be precise: these operations produce values that are then compared to exogenous data®) should
happen at once (i.e. we don’t produce parts of the data in steps, we produce the requisite data in one
counter-cycle).

To help with readability we sometimes insert a (%) near the constraints that “do the work”.

3.4.2 RAM to RAM

The following constraints pertain to aligned (i.e. the “real” or “adjusted” source and target offsets
are = 0[16]) limb transplants between the memories of two execution contexts. The RAM has at all
times access to precisely three limbs from the RAMs of three (potentially distinct) execution contexts.
Aligned transfers can thus only work one limb at a time. Only one kind of such operation is needed,
which we label RamToRam and arithmetize like so:

CN_A, = (CN_S),
CN_B, = (CN_T),

INDEX_A; = <SLO>¢
INDEX_B, = (TLO);
INDEX_C, = 0
VAL_AY = VAL_A,
VAL_BY = VAL_A, (%)
VAL_C” =VAL_C; =0
<ERF>i =0
3Recall that stack values are EVM words and are thus comprised of a high and a low part, (VALM) and (VAL')
respectively.

4e.g. logs are produced from RAM and then compared to a public commitment of logs, successfully deployed bytecodes
are produced from RAM and compared to existing bytecodes in ROM

RamToRam <=

90

3.4.3 Exodata to RAM

The following constraints may appear in aligned (EXT)CODECOPYs and CALLDATACOPYs (at the root
execution context of a transaction).

CN_A; = (CN_T);

CN_B; =0

CN_C, =0
INDEX_A,; = (TLO),
INDEX_B; = 0

ExoToRam <= INDEX_C, =0

INDEX_X; = (SLO);

VAL_AY = (VAL_X); (%)
VAL_B? =VAL_B, =0

VAL_CY =VAL_C, =0

(ERF); =0

3.4.4 Exodata and RAM agree
The following set of constraints appears in

1. aligned LOGO-LOG4 (i.e. when the offset is = 0 [16]),

2. aligned RETURNs in deployment contexts (CTYPE = 1 and deployment succedes).
We dub it RamIsExo:

CN_A, = (CN_S);
CN_B; =0

CN_C, =0

INDEX_A, = (SLO),
INDEX_B; = 0
INDEX_C, = 0
INDEX_X; = (TLO);
VAL_AY = VAL_A,
VAL_BY = VAL_B, =0
VAL_CY =VAL_C, =0
(VAL_X); = VAL_A, (%)
(ERF); = 0

RamIsExo <—

3.4.5 Killing RAM slots

Executing some opcodes may require us to replace entire limbs with 0. This is true of
e out of bounds CODECOPYs,
e out of bounds EXTCODECOPYs,
e out of bounds CALLDATACOPYs.

Since we have three RAM slots at our disposal at any time we can kill up to 3 limbs in RAM per micro
instruction. The following named constraints accomplish this:

91

1. Killing one limb:
CN_A; = (CN_T);

CN_C; =0
INDEX_A; = (TLO);
o INDEX_B; = 0
KillingOne <— INDEX_C, = 0
VAL_AY =0 (%)

VAL_B; = VAL_BY =0
VAL_C, = VAL_C’ =0

(ERF); =0
2. Killing two consecutive limbs:
CN_A, = (CN_T);
CN_B,;, = (CN_T);
CN_C; =0
INDEX_A; = (TLO);
s INDEX_B; = (TLO); + 1
KillingTwo <— INDEX_C; = 0
VAL_A? =0 (%)
VAL_B? =0 (%)
VAL_C; =VAL_CY =0
(ERF); =0
3. Killing three consecutive limb:
CN_A, = (CN_T);
CN_B,;, = (CN_T);
CN_C, = (CN_T);

INDEX_A, — (TLO),

o INDEX_B; = (TLO); + 1
KillingThree <— INDEX_C; = (TLOY; + 2

VAL_AY =0 (%)
VAL_BY =0 (%)
VAL_C? =0 (%)
(ERF); = 0

3.4.6 RAM to stack
We use the moniker PushTwoRamToStack to subsume the following set of constraints:

CN_A, = (CN_S);
CN_B, = (CN_S);
CN_C; =0

INDEX_A; = (SLO);
INDEX_B; = (SLO); + 1
INDEX_C, =0
PushTwoRamToStack <= VAL_A? — VAL_A,
VAL_B? = VAL_B,;
VAL_C; =VAL_C; =0

(VAL = VAL_A, (%)
(VAL'"); = VAL_B, (%)
(ERF); =0

92

we also require a version where we push only one limb:

CN_A, = (CN_S);

CN_B; =0

CN_C, =0
INDEX_A, = (SLO),
INDEX_B, = 0
INDEX_C, = 0

PushOneRamToStack <= VAL_AIZ_/ — VAL_A,

VAL_B? =VAL_B, =0
VAL_CY =VAL_C; =0

(VAL = VAL_A, (%)
(VAL®); =0 (%)
(ERF); =0

3.4.7 Stack to RAM

We use the moniker PushTwoStackToRam to subsume the following set of constraints:

CN_A; = (CN_T);

CN_B; = (CN_T);

CN_C, =0

INDEX_A,; = (TLO);

INDEX_B; = (TLO); + 1
PushTwoStackToRam <— INDEX_Ci -0

VAL_AY = (VAL"), (%)

VAL_BY = (VAL'"), (%)

VAL_C, =0

(ERF); =0

3.4.8 Transaction call data to RAM

The following constraints allow the 0*" execution context’s RAM (which is memoryless) to function as
temporary storage where we may store up to 3 limbs taken from transaction call data. The only scenario
where these constraints come into play is when executing CALLDATALOAD in a root execution context,
i.e. CALLDATALOADing transaction call data. Note that this is the only scenario where RAM isn’t
involved per se, see table 3.13. The (EXCEPTIONAL_RETENTION_FLAG) signals such exceptional
behaviour of the 0" execution context’s RAM.

The RAM preprocessor will initially assess how many limbs (if any) have to be imported from
transaction call data to honour a CALLDATALQOAD instruction in a root execution context: this may be
0, 1, 2 or 3. None are needed precisely when requested 32 bytes of calldata are out of bounds, in this
case no instruction is sent to the RAM data processor and the RAM preprocessor simply checks that
both (VAL") and (VAL') are both 0. Otherwise one of the following sequences of instructions is sent
to the data processor:

e a StoreXinAoneRequired micro instruction,
e a StoreXinAtwoRequired micro instruction followed by a StoreXinB micro instruction,

e a StoreXinAthreeRequired micro instruction followed by StoreXinB and StoreXinC micro in-
structions,

invariably followed by a (fast or slow) transfer to stack values (i.e. to (VAL™) and (VAL')) of the
relevant portion of three limbs currently in the 0*" execution context’s RAM.

93

We start by describing the StoreXinAoneRequired, StoreXinAtwoRequired, StoreXinAthreeRequired
constraints.

1. StoreXinAoneRequired:

CN_A, =0

CN_B, =0

CN_C, =0

INDEX_A, = 0

INDEX_B; = 0

INDEX_C; =0

INDEX_X; = (SLO);

VAL_A, ; = VAL_A, = (VAL_X); (%)
VAL_B,,, = VAL_B,; =0 (%)
VAL_C,;y; =VAL_C, =0 (%)
VAL_AY,, = VAL_AY =0

VAL_BY,, = VAL_B” =0

VAL_CY,; = VAL_C! =0

(ERF); = 1 (%)

2. StoreXinAtwoRequired:

CN_A, =0
CN_B; =0
CN_C, =0
INDEX_A, = 0
INDEX_B; = 0
INDEX_C, = 0

StoreXinAtwoRequired <= INDEX_X; = (SLO);

VAL_A;,, = VAL_A; = (VAL_X); (%)
VAL_B, . ; = VAL_B; (%)
VAL_C,,; =VAL_C; =0 (%)
VAL_A7 |, =VAL_A] =0
VAL_BY , =VAL_B/ =0
VAL_C/,; =VAL_C] =0
(ERF), =1 (%)
3. StoreXinAthreeRequired:
CN_A; =0
CN_B; =0
CN_C; =0
INDEX_A; =0
INDEX_B,; =0
INDEX_C; =0
StoreXinAthreeRequired < %ﬁiﬁjﬁl;éitikl — (VAL X); (%)
VAL_B; . ; = VAL_B; (%)
VAL_C;,; =VAL_C; (%)
VAL_AY,; = VAL_A; =0
VAL_B7,, =VAL_B; =0
VAL_C/,, =VAL_C/ =0
(ERF), = 1 (%)

94

Followed by StoreXinB and StoreXinC

4. StoreXinB:

CN_A; =0
CN_B; =0
CN_C, =0
INDEX_A; =0
INDEX_B,; =0
INDEX_C, =0
. INDEX_X; = (SLO);

StoreXinB <= VAL_A,,, = \</AL_%Ai (%)
VAL_B,,, = VAL_B; = (VAL_X); (%)
VAL_C,,; =VAL_C, (%)
V/—\L_Al-"+1 =VAL_A? =0
V/—\L_B;’+1 =VAL_BY =0
VAL_Ci”Jrl =VAL_C/ =0
(ERF);, =1 (%)

5. StoreXinC:
CN_A;, =0
CN_B, =0
CN_C, =0
INDEX_A; =0
INDEX_B; =0
INDEX_C, =0
. INDEX_X; = (SLO);

StoreXinC <= VAL_A,,, = \</AL_%’-\Z' (%)
VAL_B,.; = VAL_B; (%)
VAL_C;,; = VAL_C; = (VAL_X); (%)
VAL_A;’_H =VAL_AY =0
VAL_B,'L-’_s_1 =VAL_BY =0
VAL_C;’_s_1 =VAL_C/ =0
(ERF); = 1 (%)

Let us explain the highlights (%) we put throughout. First of all we highlight the times that
(EXCEPTIONAL_RETENTION_FLAG) is set. Notice that throughout the context whose RAM we
manipulate is that of the 0" context. We thus highlight the rows indicating whenever the values in A,
B and C are propagated to the next row. Those are the exceptional data retention constraints. They
make it so that

o if we execute a StoreXinAoneRequired micro instruction, the next micro instruction (which will
invariably be writing to the stack) uses as input the three limbs ((VAL_X);,0,0);

e a StoreXinAtwoRequired micro instruction is invariably followed by a StoreXinB micro instruc-
tion and the next micro instruction (which will invariably be writing to the stack) uses as input
the three limbs ((VAL_X);, (VAL_X);11,0) where (VAL_X); and (VAL_X);1 will be consecutive

values from transaction data;

e aStoreXinAthreeRequired micro instruction is invariably followed by StoreXinB and StoreXinC
micro instructions and the next micro instruction (which will invariably be writing to the stack)
uses as input the three limbs ((VAL_X);, (VAL_X);+1, (VAL_X);12) where (VAL_X);, (VAL_X);11
and (VAL_X); 2 will be consecutive values from transaction data.

95

The fact that (VAL_X);, (VAL_X),;11 and (VAL_X); o will be consecutive values from transaction
call data and that instruction orders are imposed in the manner described above isn’t imposed in the
data processing part of RAM: it will be imposed at the RAM preprocessing level, where the micro
instructions are formed. We will thus impose using transaction call data as the exogenous data source
and for the two or three consecutive instructions just described use consecutive limb offsets.invariably
followed by a (fast or slow) transfer to stack values (i.e. to (VAL") and (VAL')) of the relevant portion
of three limbs currently in the 0" execution context’s RAM.

3.5 Swurgical patterns

3.5.1 Purpose

The present section compiles all variations on cutting, grafting and padding that the RAM needs and
labels them. These surgical patterns are couched in a neutral setting in the sense that we use place
holder names such as S to SB. These will later will be replaced with actual column names such as
(VALhi> or BYTE_A. We also use markers for what will eventually be byte offsets € {1,...,15}.

We tend to use the same variable names over and over. Here is their general interpretation: (1) the
letter S and T stand, respetively, for source and target; source and target limbs are assumed counter-
constant; source limbs are generally used as a source of bytes with which to modify one or more target
limbs; (2) an exponent (—) is meant to signal a “new” or “updated” value i.e. a value that is computed
by the constraints; “new” values are always counter-constant; (3) the letter B stands for byte; (4) the
letter M stands for marker i.e. a “byte marker” or “byte offset” within a limb; (5) the letter P stands
for power. Thus the reader should interpret column names such as SIM; T2B and T” as “(byte) marker
in the first source limb”, “bytes of the second target limb” and “new value of the target limb.” Every
surgical pattern is given a detailed interpretation before any constraints are written down. A picture
accompanies it to make the intent clear.

3.5.2 Single byte swap

Suppose we are given
e counter-constant columns S, T and T”,
e byte columns SB and TB,
 binary columns [1] and [2],
e an “accumulator” column ACC,
e a counter-constant column TM,
e a column P.

The interpretation is the following: S contains a limb from which we will extract the least significant
byte; TM is a marker that marks a byte in T; T contains a limb of which we wish to modify the marked
byte; [1] and [2] are binary columns with threshold at T and T + 1 respectively; P is a “powers of
256” column that will allow us modify a single byte in T; the resulting limb is recorded in T".

We give the set of conditions below under a name:

1. binary plateau constraints:

(a) Plateau([1], TM)
(b) Plateau([2],TM + 1);

2. chunk constraint: IsolateChunk(ACC, TB,[1],[2]);

96

3. power constraint: Power (P, [2]);

4. update constraint:
ir CT;, =15 THEN TY; =T, + (SB; — ACC;) - P;

We encapsulate these constraints in a relation

BvteS S, T, T”;SB, TB;
yEesWaR | acc,P; T™, [1], [21;

(Note: the counter column CT is implicit in this relation.)

Figure 3.4: Representation of the constraints implemented by ByteSwap.

3.5.3 Excision
Suppose the following are given:
1. counter-constant columns T and T,

2. binary columns [1] and [2],

@

a byte colunm TB,

i

a counter-constant column TM,

5. a counter-constant column SIZE,

6. an accumulator column ACC;

7. a “powers of 256 column” column P;

The interpretation is as follows: T is a counter-constant column containing a value from which we
wish to remove a chunk of consecutive bytes; TB is T’s byte decomposition; T" is the counter-constant
column that will contain the result of excision; TM is a byte marker in T; SIZE is the number of bytes
to remove from T starting at byte offset TM; we expect TM + (SIZE — 1) < 15; [1] plateaus at TM,
[2] plateaus at TM + SIZE; the bytes to be excised are accumulated in ACC; P is a “powers of 256
column” pegged to [2].

We collect the following constraints under the moniker Excision:

1. plateau constraints:

97

(a) Plateau([1], TM)
(b) Plateau([2], TM + SIZE)

2. chunk constraint: IsolateChunk(ACC, TB, [1],[2]);
3. power constraint: Power (P, [2])

4. value enforcement:
r CT; =15 THEN T =T; — ACC; - P;

We subsume this collection of constraints under the moniker

T,TY; TB; ACC, P;)

Excision (T™, SIZE; [1], [2];

Figure 3.5: Representation of the constraints implemented by Excision.

3.5.4 [1 = 1Padded|
Supppose we are given
o binary columus [1], [2] and [3],
¢ counter-constant columns S, T,
e a byte column SB,
e counter-constant columns SM and SIZE
¢ an accumulator column ACC,
e a column P.

The interpretation is as follows: S is a limb from which we will harvest a chunk of bytes; SB is the
byte decomposition of S; SM is the offset within S from where we start harvesting bytes; SIZE is the
number of bytes to harvest; the assumption is that SM + (SIZE — 1) < 15; T will be made to contain
this chunk of bytes (left aligned); [1] plateaus at SM; [2] plateaus at SM + SIZE; [3] plateaus at SIZE;
P is pegged to [3] and builds the correct power of 256 so that we may shift the harvested chunk to
build the desired (left-aligned) prefix. Compare with figure 77

We the following collection of constraints ensures the desired behaviour:

98

1. binary plateau constraints:

(a) Plateau([1],SM),
(b) Plateau([2],SM + SIZE),
(c) Plateau([3],SIZE);

2. chunk constraint: IsolateChunk(ACC,SB, [1],[2]);
3. power constraint: Power (P, [3]);

4. value enforcement

1r CT; =15 THeN T, = ACC; - P;.

We use the short hand

[1 = 1Padded] < S,T;SB; ACC, P; >

SM, SIZE; [1], [2], [3];

0 0j0/ 0|0

Figure 3.6: Representation of the constraints implemented by [1 = 1Padded].

3.5.5 [2 = 1Padded]

Supppose we are given
o binary columuns [1], [2], [3] and [4],
e counter-constant columns S1, S2, T,
e byte columns S1B and S2B,
e counter-constant columns SIM and SIZE,
e accumulator columns ACC_1 and ACC_2,
e two columns P1 and P2.

The interpreation is as follows: S1 contains a limb from which we extract a suffix; ACC_1 will accumu-
late the bytes of said suffix; S2 contains a limb from which we extract a prefix; ACC_2 will accumulate
the bytes of said prefix; S1B and S2B are the respective byte decompositions; S1M is the offset within
S1 from where we start harvesting bytes; SIZE is the total number of bytes to harvest; T will be made
to contain the prefix extracted from S1 followed by the prefix extracted from S2 (left aligned); the
assumption is that SIM + SIZE > 16 so that two byte sources are required to build T; [1] plateaus
at SIM; [2] plateaus at SIM + SIZE — 16; [3] plateaus at 16 — SIM; [4] plateaus at SIZE; P1 and

99

P2 are “powers of 256” columns with P1 pegged to [3] and P2 pegged to [4]; together they build the
correct powers of 256 required for shifting the extracted prefix and suffix and building T. Compare
with figure 77.

The following collection of constraints ensures the desired behaviour:

1. binary plateau constraints:

(a) Plateau([1],S1IM),

(b) Plateau([2],S1M + SIZE — 16),
(¢) Plateau([3],16 — SIM);

(d) Plateau([4],SIZE);

2. prefix and suffix constraints:

(a) IsolateSuffix(ACC_1,S1B,[1]);
(b) IsolatePrefix(ACC_2,S2B,[2]);

3. power constraints:

(a) Power(P1,[3]);
(b) Power(P2,[4]);

4. value enforcement

ir CT;, =15 tHEN T; = ACC_1, - P1;, + ACC_2, - P2;.

We use the short hand

S1,S2,T;S1B, S2B;
[2 = 1Padded)] ACC_1,ACC_2;P1,P2;
SIM, SIZE; [1], [2], [3]. [4];

Figure 3.7: Representation of the constraints implemented by [2 = 1Padded).

3.5.6 [1 Full = 2]
Supppose we have
e binary columns [1], [2],

¢ counter-constant columns S, T1, T2, T1¥ T2,

100

e a counter-constant column T1M,

e byte columns SB, T1B, T2B,

e accumulator columns ACC_1, ACC_2, ACC_3,ACC_4,
e a column P.

The interpreation is as follows: S is a limb from which we will harvest all bytes (hence the descriptor
full); T1 and T2 are limbs which we will updata using S’s bytes; T1¥ and T2" are their “new” values;
SB, T1B, T2B are the respective byte decompositions; T1M is a marker for bytes in T1; [1] plateaus
at T1M; [2] plateaus at 16 — T1M; P is pegged to [1] and builds the correct power of 256 so that we
may change the relevant prefix of T2.

The following collection of constraints ensures the desired behaviour.
Plateau constraints: 1. Plateau([1], T1IM)

2. Plateau([2],16 — T1M)

Prefix and suffix constraints: 1. IsolateSuffix(ACC_1,T1B,[1]),
2. IsolatePrefix(ACC_2,T2B,[1]),
3. IsolatePrefix(ACC_3,SB,[2]),
4. IsolateSuffix(ACC_4,SB,[2]),

Power constraint: Power(P,[1]),
Update constraints: 1r CT; = 15 THEN

2. T2V = T2; + (ACC_4; — ACC_2;) - P,

We encapsulate all these constraints under a single relation

S, T1, T2, T1¥, T2,
SB, T1B, T2B;
[1Full = 2] ACC_1,ACC_2,
ACC_3,ACC_4, P
T1M, [[1]]7 [[2]];

/1/

Figure 3.8: This diagram explains the [1 Full = 2] constraint and the greek letters mentioned in the
constraints.

101

3.5.7 [2= 1Full]

Supppose we have
¢ counter-constant columns S1, S2, T,
e a counter-constant column SM,
e binary columns [1], [2],
e byte columns S1B, S2B,
o accumulator columns ACC_1, ACC_2,
e a column P.

The interpreation is as follows: S1, S2 are limbs from which we will harvest a suffix and a prefix
respectively; S1B, S2B are the respective byte decompositions of S1 and S2; ACC_1 and ACC_2
accumulate the bytes of the desired suffix and prefix; T is a limb which we will construct the previously
extracted suffix and prefix; SM is a marker for bytes in S1; [1] plateaus at SM; [2] plateaus at 16 —SM;
P is pegged to [2] and builds a power of 256: it is used to left shift the suffix extracted from S1.

The following collection of constraints ensures the desired behaviour.

1. binary plateau constraints:
(a) Plateau([1],SM),
(b) Plateau([2],16 — SM);
2. prefix and suffix constraints:
(a) IsolateSuffix(ACC_1,S1B,[1]) i.e. ACC_1 = o/,
(b) IsolatePrefix(ACC_2,S2B,[1])ie. ACC_2 = p;
3. power constraint: Power(P, [2]);
4. value enforcement: 17 CT; =15 THEN T; = ACC_1, - P; + ACC_2,.

We encapsulate all these constraints under a single relation

S1,52,T;
S1B, S2B;
ACC_1,ACC_2;P;
SM; [1], [2];

[2 = 1Full]

3.5.8 [lPartial = 1]

Suppose we have
 binary columns [1], [2], [3], [4],
e counter constant columns S, T and T”,
¢ byte columns SB and TB,
e counter constant columns SM and TM,
e a counter constant column SIZE,

e a “powers” column P and “accumulator” columns ACC_1, ACC_2.

102

The interpretation is as follows: S and T are counter-constant columns containing limbs viewed re-
spectively as a “source” and a “target” limb; SB and TB are their respective byte decomposition; T
contains the “new” value of T; SM and TM are markers € {0,1,...,15} for for S and T respectively;
we expect both SM + (SIZE — 1) < 15 and TM + (SIZE — 1) < 15; P is pegged to [2] and computes
the appropriate power of 256 so that we may replace a chunk from T with a chunk from S. Compare
with figure 77.

We collect the following constraints under a collective name

1. binary-plateau-constraints:
(a) Plateau([1], TM)

(b) ([2], T™M + SIZE)
(c) Plateau([3],SM)
(d) Plateau([4],SM + SIZE)

Plateau

2. chunk-constraints

(a) IsolateChunk(ACC_1,TB,[1],

[21)
(b) IsolateChunk(ACC_2,SB,[3],[4])

3. power-constraint: Power (P, [2])

4. update constraint:

r CT; =15 tien T = T; + (ACC_2; — ACC_L1,) - P;.

We encapsulate all these constraints under a single relation

S, T, T¥;SB, TB;
ACC_1,ACC_2;P;
SM, TM; SIZE;
110, 121, 131, [4];

(Note: we don’t explicitly mention the CT column in this constraint, it is implicit)

[1Partial = 1]

Figure 3.9: Representation of the constraints implemented by [1Partial = 1].

103

3.5.9 [lPartial = 2]

Suppose we have
e binary columns [1], [2], [3], [4], [5]
e counter constant columns S, T1, T2, T1¥, T2
e byte columns SB, T1B and T2B,
e counter constant columns SM and T1M,
e a counter constant column SIZE,
e a column P

The interpretation is as follows: S, T1 and T2 are counter-constant columns containing limbs viewed
respectively as a “source” and two “target” limbs; SB, T1B and T2B are their respective byte de-
composition; T1” and T2” contain the “new” value of T1 and T2 respectively; SM and TM are
markers € {0,1,...,15} for S and T1 respectively. We expect both SM + (SIZE — 1) < 15 and
TM + (SIZE — 1) > 16. Compare with figure 77.

We collect the following constraints under a collective name:

1. plateau constraints

(a) Plateau([1], TIM)

(b) Plateau([2], TIM + SIZE — 16)
(c) Plateau([3],SM)

(d) Plateau([4],SM + 16 — T1M)
(e) Plateau([5],SM + SIZE)

2. prefix, suffix and chunk constraints:

(a) IsolateSuffix(ACC_1,T1B,[1]
(b) IsolatePrefix(ACC_2,T2B,[2]
(c¢) IsolateChunk(ACC_3,SB,[3],[4
(d) IsolateChunk(ACC_4,SB,[4],[5

);
);
D
D
3. power-constraint: Power (P, [2])

4. update constraint:

IF CT; = 15 THEN T1% = T1 + (ACC_3; — ACC_L)
T2v; = T2; + (ACC_4, — ACC_2,) - P;.

We encapsulate all these constraints under a single relation

S,T1,T2,T1¥,T2¥;SB, T1B, T2B;
ACC_1,ACC_2,ACC_3,ACC_4;P;
SM, T1M, SIZE;

[[1]]7 [[2]]7 [[3]]7 [[4]]7 [[5]]§

(Note: we don’t explicitly mention the CT column in this constraint, it is implicit)

[1Partial = 2]

104

Figure 3.10: Representation of the constraints implemented by [1 Partial = 2].

3.5.10 [2 Full = 3]

Suppose we are given
¢ counter-constant columns T1, T3, S1, S2,
¢ byte columns T1B, T3B, S1B, S2B,
e counter-constant columns T1¥ T2, T3,
e counter-constant column TM,
e two binary columns [1], [2],

e a column P,
¢ and accumulator columns ACC_1, ACC_2, ACC_3, ACC_4, ACC_5, ACC_6.

The interpretation is as follows: T1 and T3 are limb columns to be modified; T1B, T3B are the
respective byte decompositions; TM € {1,...,15} is a marker for T1 indicating the index of the first
byte to change; S1 and S2 are limbs from which we will extract all the bytes (hence the qualifier full);
S1B and S2B are the respective byte decompositions; T1 will have its suffix swapped out with a prefix
from S1, yielding T1"; T3 will have its prefix swapped out with a suffix from S2, yielding T3"; T2"
will be constructed from the remaining suffix of S1 and the remaining prefixS2; [1] and [2] are binary
plateau columns with threshholds TM and 16 — TM respetively; ACC_1, ACC_2, ACC_3, ACC_4,
ACC_5, ACC_6 will hold all the relevant prefixes and suffixes; P is a “powers of 256” column pegged
to [1] used to perform the adequate shifts.

1. binary plateau constraints:

(a) Plateau([1], TM)
(b) Plateau([2],16 — TM)

2. prefix and suffix constraints:

a) IsolateSuffix(ACC_1,T1B,[1]),
) IsolatePrefix(ACC_2,T3B,[1]),
(c) IsolatePrefix(ACC_3,S1B,[2]),
(d) IsolateSuffix(ACC_4,S1B,[2]),
) IsolatePrefix(ACC_5,S2B,[2]),

105

(f) IsolateSuffix(ACC_6,52B,[2]),
3. power constraint: Power(P, [1])
4. update constraints: 1r CT; = 15 THEN
(a) T1¥; =T1, + (ACC_3;, — ACC_1,)
(b) T2¥; = ACC_4; - P, + ACC_5;
(¢) T3%; =T3;, + (ACC_6; — ACC_2;) - P;

We encapsulate these constraints under in a relation:

T1,T3,S1,52, T1¥,T2v, T3%;
T1B, T3B, S1B, S2B:
[2Full = 3] | ACC_1,ACC_2,ACC_3,
ACC_4,ACC_5,ACC_6;
P; TM; [1], [2];

A

Figure 3.11: Representation of the constraints implemented by [2Full = 3].

3.5.11 [3 = 2Full]
Suppose we are given
e counter-constant columns S1, S2, S3, T1 and T2,
¢ byte columns S1B, S2B, S3B,
¢ SM a counter-constant column,
 binary columuns [1], [2],
e accumulator columns ACC_1, ACC_2, ACC_3 and ACC_4,
e a colum P.

The intrepretation is as follows: S1, S2 and S3 are viewed as “source” limbs from which we will extract
prefixes and suffixes; S1B, S2B and S3B are their byte decomposition; T1 and T2 are viewed as “target”
limb columns; their value will be constructed from suffixes and prefixes of S1, S2 and S3; SM sets a
mark at a particular byte of S1, S2 and S3; [1] and [2] are binary plateau columns with jump at SM
and 16 — SM respecitvely; P is a “powers of 256” column that is pegged to [2].

Figure 3.12 illustrates the effect of the [3 = 2Full| elementary surgery. The following are the
associated constraints:

106

Plateau constraints: 1. Plateau([l],SM)
2. Plateau([2],16 — SM)

Prefix and suffix constraints: 1. IsolateSuffix(ACC_1,S1B,[1]),
2. IsolatePrefix(ACC_2,S2B,[1]),
3. IsolateSuffix(ACC_3,S2B,[1]),
4. IsolatePrefix(ACC_4,S3B,[1]),

Power constraint: Power(P, [2])
Update constraints: 1r CT; = 15 THEN

1. T1; = ACC_1, - P; + ACC_2,
2. T2; = ACC_3, - P, + ACC_4,

We encapsulate these constraints into a single relation

S1,S2,S3,T1,T2;

S1B, S2B, S3B;

[3 = 2Full] 111, 12], P, SM;
ACC_1,ACC_2,

ACC_3,ACC_4;

(Note: we don’t explicitly mention the CT column in this constraint, it is implicit.)

/L)L)

Figure 3.12: Representation of the constraints implemented by [3 = 2Full].

3.6 Limb surgery

3.6.1 Data sources and targets

The following lists for every opcode that may trigger memory operations the possibly origin and
destination.

107

Instructions | donor | recipient | encoding | surgeries |

LOGO-L0OG4 1 6,7, 11, 12;
MLOAD, CALLDATALOAD if CALLER # 0 2 1, 2;
RETURN if CTYPE = 1, CREATE(2) 3 6,7, 11, 12;
CALLDATACOPY if CALLER # 0; REVERT, 4

RETURN if CTYPE = 0; RETURNDATACOPY 6, 8, 13;

MSTORE; MSTORES 5 3, 4; 8;
(EXT) CODECOPY 6 6, 8, 9, 10;
CALLDATACOPY if CALLER = 0 7 6, 8, 9, 10;
CALLDATALOAD if CALLER =0 8 6,8, 9, 11;

Figure 3.13: There are 8 possible data source and target configurations. The last row (i.e.
CALLDATALOAD instructions involving transaction call data) is the only configuration not involving
RAM directly. Their implementation will still involve RAM: we use the 0*" execution context’s mem-
oryless RAM as a pad to store 1, 2 or even 3 limbs obtained from transaction call data.

Instruction | data donor | data recipient

SHA3

MSTORES

MSTORE

MLOAD

CALLDATALOQAD if CALLER # 0
CALLDATALOAD if CALLER =0
CALLDATACOPY if CALLER # 0
CALLDATACOPY if CALLER =0
REVERT

RETURN if CTYPE =0

RETURN if CTYPE =1
CREATE(2)

(EXT) CODECOPY
RETURNDATACOPY

LOGO-LOG4

There are thus 8 possibilities in terms of data movement: To locate data within these data sources we
require:

RAM: a context number and a limb offset; e.g. the current execution context number, that of the
caller or that of the returner;

LOGs: a log number and a limb offset;

ROM: a code fragment number, the boolean IS_INIT (indicating whether the code fragment to be
read from or compared to a RAM segment) is initialization code or (currently) deployed code,
and a limb offset;

Stack: nothing: just the high and low part of a value read from or written to the current execution

context’s stack.

3.6.2 Which opcodes require what surgeries

MSTORE8: we work with 1 source term (the low part of the stack value) and 1 target term (from the
current RAM):

108

1. type 5;

MSTORE: we work with 2 source terms (the high and low part of the stack value) and 2 or 3 target
terms (from the current RAM):
1. type 3 (fast operation),
2. type 4 (slow operation);
MLOAD: we work with a 2 or 3 source terms (from the current RAM) and 2 target terms (the high and
low part of the stack value):
1. either type 1 (fast operation),
2. or type 2 (slow operation);
CALLDATALOAD: if CALLER # 0 and OFFSET + 32 < CDS we work with a 2 or 3 source terms (from
the current RAM) and 2 target terms (the high and low part of the stack value):
1. either type 1 (fast operation),
2. or type 2 (slow operation);
otherwise the operation is split into two sub operations using either 1 or 2 source terms and a 1
target term (the high / low part of the stack value in that order):
type 6 twice (2): 66
type 7 (full) twice (3): 77,
type 6 followed by 9 (1): 69,
type 6 followed by 11 (2): 60,
type 7 (full) followed by 11 (2): 72,
type 7 (full) followed by 12 (3): T7e,
type 11 followed by type 9 (1
type 12 followed by type 9 (2

b9,

):
): 9,

© 0N W

type 9 twice: 99;

the number in parenthesis indicates the number of loads from transaction calldata required when
CALLER = 0;

L0OGs and RETURN for contract deployment: —

1. a sequence of 6’s potentially followed by 11: 6*(b)
2. a sequence of 7’s potentially followed by an 11 or 12: 7*(b/c)

RETURN and REVERT: 1. potential 8 followed by a sequence of 6’s potentially followed by an 8:
(8)67(3),
2. potential 8 followed by a sequence of 7’s potentially followed by an 8: (8)7*(8)

RETURNDATACOPY: we work with a single source term:

1. a sequence of 6’s potentially followed by an 8: 6*(8),

2. a sequence of 7’s potentially followed by an 8: 7*(8) (the last 7 may be incomplete if there
is no 8)

CALLDATACOPY: we work with a single source term (from TRANSACTION_CALLDATA_PADDED or
the CALLER’s RAM) and 1 or 2 target terms in RAM:

109

1. potential first completion (8) followed by quick copies 6* followed by potential loading a
piece followed by potentially completing the limb with 0’s (8 or 8a) followed potentially by
many full zero limbs (9*) followed by potentially some zeros (a): (8)6*(8a/8)(9*)(a);

2. potential first completion (8) followed by slow compies (d)* followed potentially by some
zero padding (a) followed potentially by fast zeros (9*) followed potentially by some zeros

(a), ie. (8)(d")(a)(97)(a);
(EXT) CODECOPY: we work with a single source term (from ROM) 1 or 2 target terms in RAM:
1. a sequence of 6’s potentially followed by 9’s (padding is part of the bytecode) and/or a
single 10: 6*9*(10)
2. a sequence of 13’s potentially followed by a 10 and potentially 9’s and potentially a 10:
d*(a9*(10))
3.6.3 RAM to RAM
RAM limb excision

The surgery described below is used by instructions writing to RAM where the source data may run
out of bounds. In other words:

1. CALLDATACOPY,
2. RETURNDATACOPY,
3. CODECOPY,

4. EXTCODECOPY.

We label it RamLimbExcision. It is comprised of the following constraints:

1. Wiring constraints:

CN_A, =0
CN_B; = (CN_T);
CN_C, =0

INDEX_A, = 0
INDEX_B; = (TLO);
INDEX_C, = 0
VAL_AY = VAL_A, =0
VAL_C? = VAL_C, =0

2. Surgery constraint:

. (VAL_B,VAL_BY;BYTE_B;ACC_1;)
Excision

POW_256_1; (TBO); (SIZE); [1], [2];
Chunk sliding no overlap

This subsection defines the RamToRamS1ideChunk surgery. It is comprised of the following constraints:

1. Wiring constraints:

CN_A,; = (CN_S);
CN_B,; = (CN_T);

INDEX_A, = (SLO);
INDEX_B, = (TLO),
INDEX_C, = 0
VAL_A” = VAL_A,
VAL_CY = VAL_C, =0

110

2. Surgery constraint:

VAL_A,VAL_B, VAL_BY:
BYTE_A,BYTE_B;
[LPartial = 1] | ACC_1,ACC_2;POW_256_1,;
(SBO), (TBO); (SIZE);
10, 21, 18], [4];

Chunk sliding with overlap

The surgery RamToRamSlideOverlappingChunk below is comprised of the following constraints:

1. Wiring constraints:

CN_A, = (CN_S);
CN_B, = (CN_T),
CN_C,; = (CN_T);

INDEX_A,; = (SLO);
INDEX_B, = (TLO);
INDEX_C, = (TLO); + 1
VAL_AY = VAL_A,

2. Surgery constraint:

VAL_A,VAL_B,VAL_C,VAL_B¥,VAL_C";
BYTE_A,BYTE_B,BYTE_C:
[1Partial = 2 ACC_1,ACC_2,ACC_3,ACC_4;
POW_256_1; (SBO), (TBO), (SIZE);
117, 121, [31, [4], [5;

3.6.4 Exogenous data to RAM

Chunk sliding no overlap

The surgery ExoToRamSlideChunk below is used by
1. CALLDATACOPY in a context that is the root context of a transaction,
2. CODECOPY and EXTCODECOPY,

It is comprised of the following constraints:

1. Wiring constraints:

CN_A, =0

CN_B, = (CN_T);
CN_C, =0

INDEX_A, = 0
INDEX_B, = (TLO),
INDEX_C, = 0
INDEX_X; = (SLO);
VAL_AY = VAL_A, =0
VAL_C? =VAL_C,; =0

2. Surgery constraint:

(VAL_X),VAL_B,VAL_B";BYTE_X,BYTE_B;
ACC_1,ACC_2;POW_256_1
(SBO), (TBOY); (SIZE);
[[1]]7 [[2]]7 [[3]]7 [[4]]5

[1Partial = 1]

111

Chunk sliding with overlap

The surgery ExoToRamSlideOverlappingChunk below is used by
1. CALLDATACOPY in a context that is the root context of a transaction,
2. CODECOPY and EXTCODECOPY.

It is comprised of the following constraints:

1. Wiring constraints:

CN_A, =0
CN_B; = (CN_T);
CN_C, = (CN_T);
INDEX_A, =0
INDEX_B; = (TLO);
INDEX_C; = (TLO); + 1
INDEX_X; = (SLO),
VAL_AY = VAL_A,; =0

2. Surgery constraint:

(VAL_X),VAL_B,VAL_C,VAL_B" ,VAL_C";
BYTE_X,BYTE_B,BYTE_C;
[LPartial = 2] ACC_1,ACC_2,ACC_3,ACC_4;
POW_256_1; (SBO), (TBO), (SIZE);
(11, 121, 31, 141, I

3.6.5 RAM to exogenous data
Use cases

The surgeries FullExoFromTwo, PaddedExoFromTwo and PaddedExoFromOne presented below are used
in the following memory instructions:

1. LOGO-LOG4 instructions,
2. CREATE and CREATE2 instructions,
3. RETURN in a deployment context which is (temporarily) successful,

4. SHA3

Left aligned padded chunk from one RAM limb
The surgery PaddedExoFromOne below is comprised of the following constraints:

1. Wiring constraints:

CN_A; = (CN_S);
CN_B, =0

CN_C,; =0

INDEX_A,; = (SLO);
INDEX_B; =0
INDEX_C, =0
INDEX_X; = (TLO);
VAL_A? = VAL_A,
VAL_BY =VAL_B, =0
VAL_CY =VAL_C; =0

112

2. Surgery constraint:

VAL_A, (VAL_X); BYTE_A;
ACC_1;POW_256_1;
(SBO); (SIZE);

[11, [21, [3];

[1 = 1Padded]

Left aligned padded chunk from two RAM limbs
The surgery PaddedExoFromTwo is comprised of the following constraints:

1. Wiring constraints:

CN_C, =
INDEX_A, = (SLO);
INDEX_B, = (SLO); + 1
INDEX_C, = 0

INDEX_X; = (TLO);
VAL_AY = VAL_A,
VAL_BY = VAL_B,
VAL_C? = VAL_C, =0

2. Surgery constraint:

VAL_A, VAL_B, (VAL_X);
BYTE_A,BYTE_B;
ACC_1,ACC_2;
POW_256_1, POW_256_2;
(SBO), (SIZE);

[1], [2], [3], [4];

[2 = 1Padded]

Full exo limb from neighboring limbs
The surgery FullExoFromTwo is comprised of the following constraints:

1. Wiring constraints:

CN_A; = (CN_S);
CN_B; = (CN_S);
CN_C; =0

INDEX_A,; = (SLO);
INDEX_B; = (SLO); + 1
INDEX_C, =0
INDEX_X; = (TLO);
VAL_AY = VAL_A;
VAL_B? = VAL_B,
VAL_CY =VAL_C, =0

2. Surgery constraint:

VAL_A, VAL_B, (VAL_X);
BYTE_A,BYTE_B;
ACC_1,ACC_2;
POW_256_1,POW_256_2;
(SBO), (SIZE):

[[1]]7 [[2H7 [[3]]7 [[4H§

[2 = 1Padded]

113

3.6.6 Stack to RAM
Full transfer

The following surgery, which we label FullStackToRAM, is used by the MSTORE instruction when offsets
aren’t aligned (i.e. (TBO) # 0).

1. cabling constraints:

CN_C, = (CN_T),

7

INDEX_A, = (TLO);
INDEX_B, = (TLO); + 1
INDEX_C; = (TLO); + 2

2. surgery constraint:

VAL_A, VAL_C; (VAL™) (VAL');
VAL_A",VAL_B",VAL_C";
BYTE_A,BYTE_C,BYTE_HI,BYTE_LO;
ACC_1,ACC_2,ACC_3,
ACC_4,ACC_5,ACC_S6;
POW_256_1; (TBO); [1], [2];

[2Full = 3]

Byte transfer
The following surgery is used by the MSTORE8 instruction alone.

1. cabling constraints:

CN_A, = (CN_T),
CN_B; =0

CN_C, =0

INDEX_A, = (TLO)
INDEX_B, = 0
INDEX_C, = 0
VAL_B” =VAL_B =0
VAL_C” =VAL_C =0

2. surgery constraint:

(VAL'), VAL_A, VAL_A;
BYTE_LO,BYTE_A;
ACC_1,POW_256_1;

<TBO>v [[1]]’ [[2]]§

ByteSwap

In their entirety we dub this LsbFromStackToRAM

3.6.7 RAM to stack: aligned offsets
Fast high / padded low

The surgery described below is used by CALLDATALOAD in a context that isn’t the root context when
the 32 bytes to retrieve from call data go out of bounds (but more than 16 bytes are in range). We
label it FirstFastSecondPadded. It is comprised of the following constraints:

114

1. Wiring constraints:

INDEX_A; = (SLO);
INDEX_B; = (SLO); + 1
INDEX_C; = 0

VAL_AY = VAL_A,
VAL_BY = VAL_B;
VAL_CY =VAL_C, =0
(VAL"); = VAL_A,

2. Surgery constraint:
VAL_B, (VAL'); BYTE_B;
[1 = 1Padded] ACC_1;POW_256_1;
0, <S|ZE>§ [[1]]7 [[2]]3

Note. The zero in the middle indicate the “zero column”. The column [1] will be equal to one along
any counter-cycle where this constraint is active.

Padded high / zero low

The surgery described below is used by CALLDATALOAD in a context that isn’t the root context when
the 32 bytes to retrieve from call data go out of bounds (with fewer than 16 bytes being in range). We
label it FirstPaddedSecondZero. It is comprised of the following constraints:

1. Wiring constraints:
CN_A,; = (CN_S);

CN_B; =0

CN_C, =0
INDEX_A, = (SLO);
INDEX_B; = 0
INDEX_C, = 0

VAL_AY = VAL_A,
VAL_BY = VAL_B, =0
VAL_CY =VAL_C, =0
(VAL'); =0

2. Surgery constraint:
VAL_A, (VAL"); BYTE_A;
[1 = 1Padded] ACC_1;POW_256_1;
0,(SBO); [1], [2];

Note. The same comment as before applies.

3.6.8 RAM to stack: non-aligned offsets
Purpose

The surgeries described in this subsection:

115

1. Exceptional_RamToStack_3To2Full 5. NA_RamToStack_2TolFullAndZero
2. NA_RamToStack_3To2Full 6. NA_RamToStack_2TolPaddedAndZero
3. NA_RamToStack_3To2Padded 7. NA_RamToStack_1TolPaddedAndZero

4. NA_RamToStack_2To2Padded

All of these surgeries are used almost exclusively by CALLDATALOAD (except for NA_RamToStack_3To2Full

which MLOAD also uses). It is a surprising fact that the arithmetization of the CALLDATALOAD instruction
turns out feature so many subcases in our system. We go into more details about what makes this
instruction particularly nasty in section 3.4.1.

Exceptional three RAM limbs ~~ two full stack elements

The surgery described below is used exclusively by CALLDATALOAD in a root context, i.e. after loading
from transaction call data into the 0" execution context’s RAM with the (ERF) = 1. We label it
Exceptional_RamToStack_3To2Full. It is comprised of the following constraints:

1. Wiring constraints:

CN_A; =0
CN_B; =0
CN_C, =0
INDEX_A, = 0
INDEX_B, = 0
INDEX_C, = 0
VAL_AY =0
VAL_B” =0
VAL_C? =0
(FAST); =0
(ERF); =0

2. Surgery constraint:

VAL_A, VAL_B, VAL_C; (VAL"), (VAL'");
BYTE_A,BYTE_B,BYTE_C;
[1], [2]; POW_256_1; (SBO);
ACC_1,ACC_2,ACC_3,ACC_4;

[3 = 2Full]

Note. Exceptional_RamToStack_3To2Full will only ever be called after some preliminary loading
from transaction call data to the 0" execution context’s RAM. Recall that these operations set the flag
(ERF) = 1 which allows the 0" execution context’s RAM to retain information for a few consecutive
(fast) micro instructions.

Three RAM limbs ~» two full stack elements

The surgery described below is used by MLOAD under all circumstances, but also by CALLDATALOAD. Let
us be precise about the second use case: it applies when both

1. the context executing CALLDATALOAD isn’t the root context of a transaction,

2. the requested 32 bytes are all within the CALLER’s RAM segment that it designated as call data
in the CALL instruction.

We label it NA_RamToStack_3To2Full. It is comprised of the following constraints:

116

1. Wiring constraints:

CN_A, = (CN_S);
CN_B, = (CN_S);
CN_C,; = (CN_S);

INDEX_A, = (SLO);
INDEX_B; = (SLO); + 1
INDEX_C; = (SLO); + 2
VAL_AY = VAL_A,
VAL_BY = VAL_B,
VAL_C? = VAL_C,
(FAST); = 0

(ERF); = 0

2. Surgery constraint:

VAL_A, VAL_B, VAL_C; (VAL"), (VAL");
BYTE_A,BYTE_B,BYTE_C;
[1], [2]; POW_256_1; (SBO);
ACC_1,ACC_2,ACC_3,ACC_4;

ey

Figure 3.14: Representation of the constraints implemented by NA_RamToStack_3To2Full.

[3 = 2Full]

Three RAM limbs ~~ a full stack element and a padded one

The surgery described below is used by CALLDATALOAD: it applies when
1. the context executing CALLDATALOAD isn’t the root context of a transaction,
2. the requested 32 bytes overflow the CALLDATA_SIZE (i.e. zero padding is required),
3. the relevant bytes span 3 limbs from the CALLER context.

(The CALLER context number is passed down in (CN_S) by the RAM preprocessor.) We label this
surgery NA_RamToStack_3To2Padded. It is comprised of the following constraints:

117

1. Wiring constraints:

CN_A, = (CN_S);
CN_B; = (CN_S);
CN_C; = (CN_S);

INDEX_A, = (SLO);
INDEX_B,; = (TLO); + 1
INDEX_C; = (TLO); + 2
VAL_AY = VAL_A,
VAL_B! = VAL_B,
VAL_CY = VAL_G,
(FAST); =0

(ERF); =0

2. Surgery constraint:
VAL_A, VAL_B; (VAL");
BYTE_A,BYTE_B:
[1], [2]; POW_256_1; (SBO);
ACC_1,ACC_2:

[2 = 1Full]

and
VAL_B, VAL_C; (VAL");
BYTE_B,BYTE_C;
[2 = 1Padded] ACC_3,ACC_4;
POW_256_1, POW_256_2;
(SBO), SIZE; [[”]a [[3]]7 [[2ﬂa [[4]];

Note: [1], [2] are used twice. Also, unless I'm mistaken the order [1], [3], [2], [4] is the

/LA

Figure 3.15: Representation of the constraints implemented by NA_RamToStack_3To2Padded.

Two RAM limbs ~» a full stack element and a padded one

The surgery described below is used by CALLDATALOAD: it applies when
1. the context executing CALLDATALOAD isn’t the root context of a transaction,
2. the requested 32 bytes overflow the CALLDATA_SIZE (i.e. zero padding is required),
3. the relevant bytes span 2 limbs from the CALLER context.

(The CALLER context number is passed down in (CN_S) by the RAM preprocessor.) We label this
surgery NA_RamToStack_2To2Padded. It is comprised of the following constraints:

118

1. Wiring constraints:

2. Surgery constraint:

and

Note: [1] is used twice.

[2 = 1Full]

[1 = 1Padded]

CN_B, = (CN_S);
CN_C, =0

INDEX_A, = (SLO);
INDEX_B,; = (TLO); + 1
INDEX_C; = 0

VAL_AY = VAL_A,
VAL_B! = VAL_B,
VAL_CY = VAL_C, =0
(FAST); =0

(ERF); =0

VAL_A, VAL_B; (VAL");
BYTE_A,BYTE_B;
[1], [2]; POW_256_1; (SBO);
ACC_1,ACC_2;

VAL_B; (VAL"):
BYTE_B;
ACC_3; POW_256_2;
(SBO), SIZE; [1], [3], [4];

00000

Figure 3.16: Representation of the constraints implemented by NA_RamToStack_2To2Padded.

Two RAM limbs ~~ a full stack element and zero

The surgery described below is used by CALLDATALOAD: it applies when

1. the context executing CALLDATALOAD isn’t the root context of a transaction,

2. the requested 32 bytes overflow the CALLDATA_SIZE (i.e. zero padding is required),

3. precisely 16 bytes of the requested bytes are in the call data,

4. the relevant bytes span 2 limbs from the CALLER context.

119

(The CALLER context number is passed down in (CN_S) by the RAM preprocessor.) We label this
surgery NA_RamToStack_2Tol1FullAndZero. It is comprised of the following constraints:

1. Wiring constraints:

INDEX_A, = (SLO);
INDEX_B, = (SLO); + 1
INDEX_C, = 0

VAL_AY = VAL_A,
VAL_B! = VAL_B,
VAL_CY = VAL_C, =0

(VALY =0
(FAST); =0
(ERF); =0

2. Surgery constraint: '
VAL_A, VAL_B; (VAL");
BYTE_A, BYTE_B;

(2= 2Full] | 1) o). POW_256_1; (SBO);
ACC_1,ACC_2;
Note: we set (VAL'");, = 0 in the wiring constraints.

vy

0|0/0/0/00|0
Figure 3.17: Representation of the constraints implemented by NA_RamToStack_3To2Full.

Two RAM limbs ~» a padded stack element and zero
The surgery described below is used by CALLDATALOAD: it applies when

1. the context executing CALLDATALOAD isn’t the root context of a transaction,

2. the requested 32 bytes overflow the CALLDATA_SIZE (i.e. zero padding is required),
3. fewer than 16 bytes of the requested bytes are in the call data,

4. the relevant bytes span 2 limbs from the CALLER context.

(The CALLER context number is passed down in (CN_S) by the RAM preprocessor.) We label this
surgery NA_RamToStack_2TolPaddedAndZero. It is comprised of the following constraints:

120

1. Wiring constraints:

CN_A, = (CN_S);
CN_B; = (CN_S);
CN_C, =0

INDEX_B, = (SLO); + 1
INDEX_C, = 0

VAL_AY = VAL_A,
VAL_BY = VAL_B,
VAL_CY = VAL_C, =0

INDEX_A, = (SLO);

(VALY =0
(FAST); =0
(ERF); =0

2. Surgery constraint:

VAL_A, VAL_B; (VAL");
BYTE_A,BYTE_B;
ACC_1,ACC_2; POW_256_1, POW_256_2;
(SBO), SIZE; [1], [2], [3]. [4;

[2 = 1Padded]

Note: we set <VALI°>,- = 0 in the wiring constraints.

00 00 0O0|0O0|O

Figure 3.18: Representation of the constraints implemented by NA_RamToStack_2To1PaddedAndZero.

One RAM limb ~» a padded stack element and zero
The surgery described below is used by CALLDATALOAD: it applies when
1. the context executing CALLDATALOAD isn’t the root context of a transaction,
2. the requested 32 bytes overflow the CALLDATA_SIZE (i.e. zero padding is required),
3. fewer than 16 bytes of the requested bytes are in the call data,
4. the relevant bytes span 1 limb from the CALLER context.

(The CALLER context number is passed down in (CN_S) by the RAM preprocessor.) We label this
surgery NA_RamToStack_1TolPaddedAndZero. It is comprised of the following constraints:

121

1. Wiring constraints:

CN_B; =0

CN_C; =0
INDEX_A, = (SLO);
INDEX_B; = 0
INDEX_C; = 0

VAL_AY = VAL_A,
VAL_BY = VAL_B, =0
VAL_CY = VAL_C, =0

(VALY =0
(FAST); =0
(ERF); =0

2. Surgery constraint:
VAL_A; (VAL"); BYTE_A;
[1 = 1Padded] ACC_1; POW_256_1;
(SBO), SIZE; [1], [2], [3];

Note: we set (VAL'); = 0 in the wiring constraints.

00 00O 0/00/0/0O0|O

Figure 3.19: Representation of the constraints implemented by NA_RamToStack_1TolPaddedAndZero.

3.7 Consistency constraints

3.7.1 Call stack consistency

The execution trace carries meta information about the call stack and about offsets and sizes for call
data and return data. When returning or reverting to a previous context we must recuperate said
meta information. The constraints here ensure the validity of this information. We shall reorder some
columns accoring to the lexicgraphic order on the pair

(CONTEXT_NUMBER, RAM_TIMESTAM P)

We will need the following reordered columns:

122

1. [CNJ® 5. [CALLDATA_SIZE]®

2. (O 6. [RETURNERJ®
3. [CALLER]® 7. [RETURNDATA_OFFSET[®
4. [CALLDATA_OFFSET[® 8. [RETURNDATA_SIZE®

where by definition ([CN]xz , [C]]r') is lexicographically sorted. We impose the following consistency
constraints:

1. call-data-meta-information consistency: IF [CN]?}r1 = [CN]? THEN

[CALLER]® | = [CALLER]®
[CALLDATA_OFFSET] | = [CALLDATA_OFFSET[®

[CALLDATA_SIZE] | = [CALLDATA_SIZE®

2. return-data-meta-information consistency: IF ([CN}ﬁl = [CN]ZC AND [RETURNERB‘_:H =
[RETURNER]Y) rrin
[RETURNDATA_OFFSET[®, — [RETURNDATA_OFFSET]®
[RETURNDATA_SIZE® | = [RETURNDATA_SIZE]®

i+1 T

3.7.2 Concatenated columns and order

We introduce several interleaved columns:
1. CN_ABC := CN_AHBHCN_BHCN_C,
2. INDEX_ABC := INDEX_AHBINDEX_BHINDEX_C
3. (uRST)®B3 .= (uRST) B(uRST) B(uRST)
4. VAL_ABC := VAL_AHBVAL_BHVAL_C
5. VAL_ABC"” := VAL_A"HVAL_B"BVAL_C"

We introduce their reordered variants: [CN_ABCJ, [INDEX_ABC/™, [(4RST)®3]™, [VAL_ABC/®,
[VAL_ABC”]I: where reordering is done according to the lexicographic order on the triple

(CONTEXT_NUMBER, INDEX, (uRST))

in other words, the reordering is such that

([CN_ABC®, [INDEX_ABCJ®, [WRSUEg 3}3)

are lexicographically ordered.

123

3.7.3 Memory consistency constraints
1. There are no constraints when [CN_ABC]? =0
2. 11 [CN_ABCT® # 0:

(a) 1F
[CN_ABCJ®, = [CN_ABC®

i+1
AND
[INDEX_ABCJ® | = [INDEX_ABC[*®
AND

[(URST)ESS £ [(uRST)ES]

THEN [VAL_ABCIR | = [VAL_ABC/J®

i+l
(b) ¢
[CN_ABCJ®, # [CN_ABCJ®
OR
INDEX_ABCJ®, # INDEX_ABC[®
bled

THEN [VAL_ABC];;, = 0.

In other words after reordering VAL_ABC and VAL_ABCY as explained above we have, for constant
[CN_ABCJ™ and [INDEX_ABC®

124

[CN_ABC® | INDEX_ABCI® | [(«RST)®3)™ | [VAL_ABC® | [VAL_ABC'[®
0 0 ? 28 ? ?
1 0 ? 55 ? ?
2 0 ? 117 ? ?
i c k 12 0 &
i+1 c k 19 P *
i+2 c k 20 * O
i+3 c k 38 0 V)
i+4 ¢ ! 23 0 f
i+5 c l t 0
i+6 ¢ 1+1 0 B
i+7 d I+1 > i
i+8 c’ I+1 i i
i+9 d I+1 36 i &
i+ 10 ¢ I+1 37 & ®
i+ 11 ¢ I 42 25 0 *
i+ 12 d 142 * A
i+13 ¢ I1+2 A f
i+ 14 ¢ 142 i i
i+ 15 ¢ 142 # q

Figure 3.20: (MICRO_RAM_STAMP) = 27 appears thrice (as is to be expected) and the three rows in
question (i + 5,7 + 7,7 4+ 13) the values are taken from the same execution context (¢’) in consecutive
limbs (I, { + 1, I + 2) and the values in RAM are changed(f ~» ¢, bt ~» { andA ~- ff). This is
compatible with the 27th micro RAM operation being a non aligned MSTORE (in theory it could also
be part of a non aligned (EXT)CODECOPY.) In a similar vein, note that the 33rd micro RAM operation
(i.e. (MICRO_RAM_STAMP) = 33) touches two consecutive RAM locations (I + 2 and ! + 2) in that
same execution context ¢’ without modifying their values (i ~» £ and ff ~» f). This could be part of
an aligned or non aligned logging operation, an aligned or non aligned MLOAD, a successful RETURN in a
deployment context (CTYPE = 1) among other options. (If we wanted to more information we would
have to find what other context is activated at (MICRO_RAM_STAMP) = 33, or better yet: consult

the non reordered exeuction trace).

125

Chapter 4

ROM

4.1 The ROM module

4.1.1 Introduction

The ROM contains the bytecodes of the contracts used within a batch of transaction as well as some
associated metadata such as code size and code hash. Its main role in the overall design is to