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1 Introduction

The goal of this document is to specify a confirmation rule for the current
Ethereum consensus protocol, Gasper. A confirmation rule is an algorithm run
by nodes that allows them to identify a confirmed prefix of the canonical chain,
for which safety properties hold; in other terms, it outputs whether a certain
block in the canonical chain is confirmed. When this is the case, the block is
guaranteed to never be reorged, assuming both network synchrony and a certain
percentage of stake being honest, i.e., that it follows the protocol.

We first specify a confirmation rule for LMD-GHOST, the component of
Gasper that outputs the canonical chain, with proposer-boost, and without
considering the finality gadget (or, FFG component) of the protocol. Then, we
enhance the rule to account for the influence that the FFG component has on
the protocol. In order to do so, we propose a simplification of the filtering rule
utilized by the fork-choice function implemented by LMD-GHOST, which rules
out a certain class of withholding attacks, allowing us to still prove safety of
confirmed blocks.

2 Confirmation Rule for LMD-GHOST

Let b be a block, n − 1 be the slot of b’s parent (possibly slot(b) > n, if there
were missed slots), and let N be the current slot (N ≥ slot(b) ≥ n ∈ N). Let β
be the fraction of adversarial validators. Moreover,

• Let WN
b be the set of validators in the committees from slot n until slot

N ;

• let SN
b be the set of validators in the committees from slot n until slot N

that support block b (SN
b ⊆ WN

b );
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• let JN
b be the set of honest validators in the committees from slot n until

slot N (JN
b ⊆ WN

b );

• let HN
b be the set of honest validators in the committees from slot n until

slot N that support block b (HN
b ⊆ JN

b );

• let AN
b be the set of adversarial validators in the committees from slot n

until slot N (AN
b ⊆ WN

b ); and

• let Wp be the proposer boost value, i.e., the weight which is temporar-
ily granted to a timely proposal. In the current implementation of the
Ethereum’s consensus protocol, Wp is 0.4 of a committee’s weight.

For a set V of validators, let |V | be the weight of the set, i.e., the sum
of the effective balances, i.e., the balance of each validator that influences its
voting power. In particular, we let AN

b = |AN
b |, SN

b = |SN
b |,WN

b = |WN
b |, and

JN
b = |JN

b |. Observe that WN
b = JN

b ⊔ AN
b , where ⊔ represent the disjoint

union between sets, so WN
b = AN

b + JN
b .

Assumption on distribution of adversarial validators. We assume that
for every N ≥ n, AN

b ≤ βWN
b . Equivalently, that ∀N ≥ t, JN

b ≥ (1 − β)WN
b .

Intuitively, this means that in the union of committees in any consecutive slots,
the number of distinct adversarial validators is bounded at a fraction β of the
number of total distinct validators.

Assumption on network synchrony. We assume that starting from the
time validators cast a vote in the current slot, the network is synchronous with
latency ∆ lower than the duration between the time when validators cast a vote
in a slot, and the end of that slot. Intuitively, this means that starting from the
current slot, the votes that honest validators cast in a slot will be received by
all other honest validators by the end of that slot. We make no assumptions on
the latency of messages sent in prior slots.

2.1 Safety Indicator

Let pNb :=
HN

b

JN
b

. We show in Lemma 1 and Lemma 2, that ∀b′ ∈ chain(b) pNb′ >

1
2(1−β) (1 +

Wp

WN
b

) implies safety of b. Still, we cannot directly use this for con-

firmation, because pNb′ is not observable, since we do not know who the honest

validators are. We then introduce the safety indicator qNb :=
SN
b

WN
b

, which is very

similar to pNb , but considers latest messages from all validators rather than just
from honest ones, and is therefore observable. We show that we are able to
detect safety using {qNb′ : b′ ∈ chain(b)}, because we can check a condition on

{qNb′ : b′ ∈ chain(b)} which implies that ∀b′ ∈ chain(b) pNb′ > 1
2(1−β) (1 +

Wp

WN
b

),

and thus safety.
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Lemma 1. If ∀b′ ∈ chain(b) pNb′ >
1

2(1−β) (1 +
Wp

WN
b

), then all the honest valida-

tors in slot N + 1 will vote for a descendant of block b.

Proof. We proceed by induction proving that for any b′ ∈ chain(b), all the
honest validators in slot N + 1 will vote for a descendant of block b′.

Base Case: b′ is the genesis block. Obvious as honest validators always
vote for a descendant of the gensis block.

Induction Step. We assume that all honest validators in slot N +1 will vote
for a descendant of the parent of block b′. First, we observe that HN

b′ = pNb′ J
N
b′ >

JN
b′

2(1−β) (1+
Wp

WN
b′
) ≥ (1−β)WN

b′
2(1−β) (1+

Wp

WN
b′
) =⇒ HN

b′ >
WN

b′ +Wp

2 . Second, we observe

that because of the network synchrony assumption, we know that all the honest
nodes in committee N + 1, by the time they will cast their vote, they will have
received all the votes casts by nodes in HN

b′ . Observe also that (WN
b′ + Wp)

represents the maximum total weight that can support any of the children of
the parent of b′. The above implies that by the time an honest validator v in
committee N +1 casts its vote, the weight supporting b′ in the view of v will be
higher than the weight possibly supporting any of its siblings. This, together
with the inductive hypothesis, implies that v will vote for a descendant of b′ in
slot N + 1.

Lemma 2. If ∀b′ ∈ chain(b) pNb′ >
1

2(1−β) (1+
Wp

WN
b

), then ∀b′ ∈ chain(b) pN+1
b′ ≥

pNb′ .

Proof. Let jN+1 be the honest weight in slot N +1. Pick any b′ ∈ chain(b). By
Lemma 1, we have that JN+1

b′ = JN
b′ ∪jN+1 and HN+1

b′ = HN
b′ ∪jN+1 given that

any vote supporting b also supports b′. Given that by definition HN
b′ ⊆ JN

b′ , we

have that HN
b′ ∩ jN+1 ⊆ JN

b′ ∩ jN+1. Hence,
HN+1

b′

JN+1
b

=
HN

b′ +x

JN
b′ +y

for some 0 ≤ y ≤ x

which implies
HN+1

b′

JN+1

b′
≥ HN

b′
JN
b′
.

Lemma 3. If qNb > 1
2 (1 +

Wp

WN
b

) + β, then pNb > 1
2(1−β) (1 +

Wp

WN
b

).

Proof.
HN

b

JN
b

≥ SN
b −AN

b

JN
b

=
SN
b −AN

b

WN
b −AN

b

≥ SN
b −βWN

n

WN
b −βWN

n
=

S−βWN
b

WN
b (1−β)

= (
S−βWN

b

WN
b

)( 1
1−β ).

The second inequality comes from minimizing the fraction x−z
y−z , where z ≤ c,

which gives x−c
y−c . Finally, pNb =

HN
b

JN
b

≥ SN
b −βWN

b

WN
b

1
1−β =

qNb −β
1−β > 1

2(1−β) (1 +
Wp

WN
b

).

Lemma 4. The condition on qNb in Lemma 3 is strict.

Proof. Assume qNb ≤ 1
2 (1 +

Wp

WN
b

) + β. What we want to show is the existence

of two sets HN
b and AN

b such that pNb ≤ 1
2(1−β) (1 +

Wp

WN
b

).
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To this purpose, pick any AN
b such that AN

b = βWN
b and any HN

b such
that HN

b = max(SN
b −AN

b , 0). This corresponds to the possible case where the
adversarial weight is βWN

b and all of this weight supports b up to maximum
SN
b . As a consequence of this, we have that:

• If SN
b − βWN

b ≤ 0, then

pNb =
HN

b

JN
b

= 0 ≤ 1
2(1−β) (1 +

Wp

WN
b

)

as 0 ≤ β < 1

• If SN
b − βWN

b > 0, then
HN

b

JN
b

=
SN
b −βWN

b

WN
b −βWN

n
=

S−βWN
b

WN
b (1−β)

= (
S−βWN

b

WN
b

)( 1
1−β )

Given that SN
b ≤ WN

b

(
β + 1

2 (1 +
Wp

WN
b

)
)
, then we have that

pNb =
HN

b

JN
b

= (
S−βWN

b

WN
b

)( 1
1−β ) ≤

1
2(1−β) (1 +

Wp

WN
b

)

Theorem 1 (Safety of confirmation). If ∀b′ ∈ chain(b) qNb′ > 1
2 + β, then b is

always canonical in the view of honest validators when voting at a slot > N.

Proof. By Lemma 3, ∀b′ ∈ chain(b) qNb′ > 1
2 (1 +

Wp

WN
b

) + β implies ∀b′ ∈

chain(b) pNb′ > 1
2(1−β) (1 +

Wp

WN
b

). By induction, using this for the base case and

Lemma 2 for the inductive step, this implies that ∀N ′ ≥ N ∀b′ ∈ chain(b) pN
′

b′ >
1

2(1−β) (1+
Wp

WN
b

). Then, given any slot N ′ > N , we have ∀b′ ∈ chain(b) pN
′−1

b′ >

1
2(1−β) (1 +

Wp

WN
b

), which by Lemma 1 implies that b is canonical in honest views

of voters at slot N ′.

Algorithm 1 LMD Confirmation rule

1: State
2: C : chain of blocks b
3: b0 : genesis block, i.e., block at slot 0 in C
4: WN

b : set of validators in the committees from slot n until slot N
5: WN

b ← |WN
b |

6: SN
b ← |{vi ∈ WN

b : vi voted for b}|
7: function parent(b)
8: return b.parent
9: function isOneSafe(b,N)

10: return
SN
b

WN
b

> 1
2

(
1 +

Wp

WN
b

)
+ β

11: function isLMDConfirmed(b,N)
12: if b = b0 then
13: return true
14: return isOneSafe(b,N) ∧ isLMDConfirmed(parent(b), N)
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3 Confirmation rule for the Ethereum consensus
protocol

3.1 FFG filtering

The only blocks which are considered by the fork-choice are those in the subtree
rooted at the latest justified checkpoint, i.e., store.justified checkpoint.
Before running LMD-GHOST on that subtree, further filtering happens, po-
tentially removing some branches. In the following, the filtering condition
correct justified is defined. A branch is not viable if correct justified is
false for the leaf block of the branch, and a block remains in the block tree (it
is not filtered out) if it is contained in at least one viable branch.

correct_justified = (

store.justified_checkpoint.epoch == GENESIS_EPOCH

or voting_source.epoch == store.justified_checkpoint.epoch

or (

store.unrealized_justifications[block_root].epoch >= store.

justified_checkpoint.epoch and

voting_source.epoch + 2 >= current_epoch

)

)

3.2 Withholding attacks

Let the current epoch be e, with epoch boundary block C. Suppose the adver-
sary controls many slots in a row at the end of epoch e, enough that withholding
those blocks will prevent the chain from containing sufficiently many votes to
justify C. The adversary also controls the first slot in epoch e+1. Suppose also
that it is able to use those blocks to create a fork which contains sufficiently
many attestations to justify C, so that it will be justified in the state of the first
block of epoch e + 1, built on the adversarial fork. If that’s the case, then the
adversarial fork will have C as state.current justified checkpoint, and
honest validators will set store.justified checkpoint to C. On the other
end, store.unrealized justifications[block root].epoch will be less than
e for the leaf block on the honest branch, since it does not contain sufficient jus-
tification evidence. Therefore, correct justified will be false for it, filtering
out all blocks in the honest branch which are not also part of the adversarial
branch, causing a reorg to the latter.

This is easiest if the fork is “shallow”, i.e., if it starts only a few blocks
before the first of the consecutive adversarial slots, because the attestations
in all blocks which are not forked out contribute to justification already. Any
attestations in blocks which are forked out can still be used, but have to be
included in some block on the adversarial branch. The adversary has to then
ensure it has enough space to include attestations with total weight ≥ 2

3Wt, so
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that C is justified on its branch. Even such shallow forks can break the safety
guarantees of our confirmation rule, but it is also worth nothing that deeper
forks are possible if the adversary controls sufficiently many slots. For example,
suppose the adversary controls the last 11 slots in epoch e and the first one in
epoch e + 1. It can then create a fork which starts directly after block C, and
continues with blocks from the 11 consecutive adversarial slots. Since 11 > 32

3 ,
the honest fork cannot possibly contain enough attestations to justify C, as
it only contains at most the first 21 < 2

3 ∗ 32 blocks of epoch e. Moreover,
the adversarial branch can include enough attestations to justify C, since the
redundancy in the space for including attestations in blocks is 2x. The reorg
described in the previous paragraph can then be carried out, which in this case
forks out the entire honest branch after C.

3.3 Fork-choice change

Ensuring against this attack requires either already observing sufficiently many
FFG votes on the current chain, in order for a justification to happen after the
epoch transition, or to add additional assumptions, under which we have high
confidence that enough votes will accrue in the honest chain by the end of the
epoch. The first approach can work when confirmation is performed later in an
epoch, because in practice sufficiently many votes will be observed soon after
2
3 of the epoch has passed, at which point safety is ensured. For the earlier
blocks, we are left with the second approach, but this is not very promising. In
order for the attack not to be viable, we are forced to assume a fairly low β,
both so that the adversary cannot withhold too many votes and so that it has
a negligible probability of controlling many slots in a row at the end of the epoch.

To avoid having to go down this route, greatly weakening the confirmation
rule, we can introduce a simple fork-choice change, which implements a strictly
weaker form of filtering: at epoch e, with latest justified checkpoint J , a validator
considers a leaf block b viable if it descends from J and the latest justified
checkpoint in the state of b is either J or is from epoch ≥ e − 2. In other
words, correct justified is changed to the following, removing the condition
on unrealized justifications:

correct_justified = (

store.justified_checkpoint.epoch == GENESIS_EPOCH

or voting_source.epoch == store.justified_checkpoint.epoch

or voting_source.epoch + 2 >= current_epoch

)

This gets us closer to the “ideal” protocol with no filtering, where the whole
subtree rooted at the latest justified is viable. In particular, as we explain in
the following section, it prevents the withholding attack explained above, by
affording us one extra epoch to include justification evidence, making it much
harder for the adversary to prevent its inclusion and force filtering of an honest
branch.
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3.4 Analysis of the fork-choice change

No surround voting Consider an honest validator voting at
epoch e, following the filtering rule specified in the previous sec-
tion. If store.justified checkpoint.epoch == GENESIS EPOCH or
voting source.epoch == store.justified checkpoint.epoch, then clearly
the validator cannot possibly be committing a slashable offense with its vote.
If voting source.epoch + 2 >= current epoch, then the vote is either from
epoch e− 2 to e or from e− 1 to e. In either case, it cannot be a surround vote,
since there is at most one epoch in between source epoch and target epoch, not
enough to surround another vote.

Withholding attack prevention Consider the setup of the withholding at-
tack above, where the adversary has managed to create an adversarial branch
which justifies C, the EBB of epoch e, while on the other end the honest branch
does not even include sufficient justification evidence for C. Still, the hon-
est branch does not get filtered out by the new rule, as long as it justifies
epoch e − 1, because then voting source.epoch + 2 >= current epoch and
correct justified is true. At this point, the honest branch has the entirety
of epoch e+1 to include sufficient justification evidence for C, and if it does so
it will also not be filtered out in epoch e+ 2 either. For the attack to succeed,
the adversary has two possible avenues: it either must prevent epoch e−1 from
being justified, or it must prevent the justification evidence for epoch e from
being included in the honest branch by the end of epoch e+ 1.

General prevention of filtering reorgs Say that we are at epoch e, and let
the currently canonical head be B. We want to analyze the possibility of B being
reorged due to being filtered out, because of correct justified not being true
at some point during epoch e. Without loss of generality, assume that epoch
e − 1 is not justified in the state of B, because otherwise correct justified

would certainly always be true for B throughout epoch e. We assume that epoch
e−2 is justified, with justified checkpoint J . This amounts to two assumptions:

• The adversary cannot prevent the formation of honest justification evi-
dence in an epoch, meaning that there are at least 2

3Wt honest votes from
epoch e− 2 (more generally, in any epoch) with the same target ; and

• The adversary cannot prevent honest justification evidence from being
included in some chain for a whole epoch: if honest justification evidence
exists for epoch e− 2, then it is all available by the end of the epoch, and
we assume the adversary cannot prevent that, by the end of epoch e− 1,
there exists a chain which contains such evidence.

The first assumption is unavoidable, unless we do away with filtering alto-
gether, and just require that a branch contains the highest justified checkpoint
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in order to be viable 1(which requires far deeper protocol changes). This is
because an adversary which can reliably prevent justification can prevent the
honest branch from making any justification progress, and eventually reveal a
branch with a higher justification, which causes a reorg. The second assumption
can be made very weak, by either allowing blocks to include more attestations
or by only doing so when they include sufficient evidence in order to justify. In
particular, this second solution would mean that a single honest proposer per
epoch is sufficient to satisfy the assumption.

Given that a justified checkpoint J from epoch e− 2 exists, then it must be
the case that J is justified in the state of B. This is because epoch e− 1 is not
justified in the state of B, so if it also did not justify epoch e − 2 it would be
filtered out, and not be canonical. Suppose now that B stops being canonical,
while still being an LMD winner, due to being filtered out of the fork-choice
tree. For that to be the case, it must be that J is not the highest justified.
Therefore, there must be another justified checkpoint J ′ in epoch e− 1. Let A
be the block of J ′. Since epoch e − 2 is justified in the state of B, it must be
the case that B conflicts with A, or it would not be filtered out. Let B′ be the
earliest ancestor of B which conflicts with A. Since J ′ is justified, there are 2

3Wt

votes from epoch e− 1 with target J ′, which must all be for descendants of A.
At least ( 23 −β)Wt of these are votes from honest validators, and therefore they
were cast timely and were public already at the end of epoch e−1. If αWt is the
total amount of weight which the adversary is willing to equivocate with, then
the subtree rooted at B′ can have received at most ( 13 + α)Wt weight during
epoch e− 1, since all votes for A do not contribute weight to B′. Therefore, if
2
3 −β > 1

3 +α, or in other words β+α < 1
3 , it is the case that A must beat B′ in

LMD-GHOST, at the end of epoch e− 1. Honest validators would then vote on
the subtree of A, and it would only increase its LMD-GHOST advantage over
the subtree of B′, contradicting that B was canonical at some point in epoch e.

3.5 Extending the confirmation rule

Let:

• b be the block for which we seek confirmation;

• e be the epoch of b, with epoch(N) = e;

• C(b) be the checkpoint in chain(b) at epoch e, i.e., the highest checkpoint
in chain(b);

1If we merely required being a descendant of the latest justified in order for a block to
be viable, it could not be filtered out just because of the on-chain justification status. To
filter out a block which would otherwise be an LMD-winner, the adversary would have to
produce a conflicting justification, which is much harder. In fact, with the two assumptions
we have made, the adversary is also forced to produce a conflicting justification, and in the
next paragraph we show that this is very difficult
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• J(b) be the highest justified checkpoint in chain(b). As part of the con-
firmation rule, we check that epoch(J(b)) = e− 1;

• Wf be the weight of validators yet to vote in epoch e at the current time;

• Wt be the total weight of the validator set; and

• let Sffg,N
C(b) be the FFG support of C(b), i.e., the weight from the subset

of FFG votes received with (source = J(b), target = C(b)).

Assumptions:

• a1 : ∀N ≥ n, AN
b ≤ βWN

b < 1
3W

N
b ;

• a2: The adversary controls a fraction of validators < β < 1
3 ;

• a3: Suppose sufficiently many votes to justify checkpoint C are available at
the end of epoch(C), and that some block b ≻ C is canonical in all honest
views at epoch(C) + 1. Then, by the end of epoch epoch(C) + 1, there
exists some block b′ ≻ b which contains enough attestations to justify C;
and

• a4: The adversary is willing to equivocate at most αWt weight, with
α ≤ β.

As we have discussed in the last paragraph of Section 3.4, a3 can be made
a much weaker assumption, if this ever were to be needed, by making small
changes to the way attestations are included, so that a single honest proposer
per epoch is sufficient.

Algorithm 2 Complete confirmation rule

1: function isConfirmed(b,N)
2: bestDesc ← arg maxb′⪰b∧epoch(b′)=epoch(N) S

N
b′

3: return isConfirmedCurrentEpoch(bestDec, N)
4: function isConfirmedCurrentEpoch(b,N)
5: return
6: ∧ isLMDConfirmed(b) ▷ (c1)

7: ∧ Sffg
C(b) −min(αWt, β(Wt −Wf ), S

ffg
C(b)) + (1− β)Wf ≥ 2

3
Wt ▷ (c2)

8: ∧ epoch(J(b)) = epoch(N)− 1 ▷ (c3)

3.6 Proof

Firstly, we prove some lemmas relating to the basic induction of the vanilla
confirmation rule which does not take into account FFG. To do so, we add the
condition that b does not get filtered out, so that only LMD-GHOST votes are
relevant to whether or not it is canonical.
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Lemma 5. If pNb′ > 1
2(1−β) (1 +

Wp

WN
b

) ∀b′ ∈ chain(b) and b is not filtered out by

any honest validator in slot N + 1, then all honest validators in slot N + 1 will
vote for a descendant of block b.

Proof. We simple apply the reasoning from Lemma 1, together with the fact
that b does not get filtered out.

Lemma 6. If pNb′ > 1
2(1−β) (1 +

Wp

WN
b

) ∀b′ ∈ chain(b) and b is not filtered out by

any honest validator in slot N + 1, then pN+1
b′ ≥ pNb′ ∀b′ ∈ chain(b).

Proof. We apply the same reasoning from 2, together with the fact that b does
not get filtered out.

We now show another lemma, which carries out the induction on pNb within
a given epoch, again provided that b never gets filtered out during it (by any
honest validator).

Lemma 7. Consider an epoch e′ ≥ e, and let N ′ = N if e′ = e, or N ′ be the last
slot of epoch e′ − 1 otherwise. If it is the case that b is never filtered out in the
view of any honest validator during epoch e′, and pN

′

b′ > 1
2(1−β) (1 +

Wp

WN
b

) ∀b′ ∈

chain(b), then pN
′′

b′ > 1
2(1−β) (1 +

Wp

WN
b

) ∀b′ ∈ chain(b) holds ∀N ′′ > N ′ with

epoch(N ′′) = e′, as well as for N ′. Moreover, all honest validators in such slots
vote for a descendant of b.

Proof. The induction is on N ′′, with the base case being N ′. Let N ′′ ≥ N ′ be
such that epoch(N ′′+1) = e′. We know that either N ′′ = N ′ or epoch(N ′′) = e′.

In either case, by the inductive assumption we have that pN
′′

b′ > 1
2(1−β) (1+

Wp

WN
b

)

∀b′ ∈ chain(b). If b does not get filtered out by any honest validator during

epoch e′, then, by Lemma 6, pN
′′+1

b′ > 1
2(1−β) (1 +

Wp

WN
b

) ∀b′ ∈ chain(b).

Lemma 8. Suppose that every honest validator in an epoch e′ votes for a de-
scendant of block b. Then, no checkpoint conflicting with b can be justified in
epoch e′

Proof. Since all honest validators in epoch e′ vote for a descendant of b, any
branch conflicting with b can at most receive the adversarial FFG votes from
epoch e′. By a2, the weight from adversarial votes is < βWt < Wt

3 , so no
checkpoint conflicting with b can be justified.

Main Proof. In order to show that b is safe, we can show that any honest
validator always sees it as canonical in every slot > N . For that to be the case,
it is sufficient that, ∀N ′ ≥ N , b is never filtered out of the block tree of any
honest validator in slot N ′ + 1, and that pN

′

b > 1
2(1−β) (1 +

Wp

WN
b

) holds, because

then Lemma 5 implies that all honest validators in slot N ′+1 see b as canonical.

To show this, we proceed by induction on the epoch. For each e′ ≥ e,
we want to show that b does not get filtered out during epoch e, and also
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that, for any N ′ ≥ N such that epoch(N ′) = e′, pN
′

b′ > 1
2(1−β) (1 +

Wp

WN
b

) holds.

Moreover, we also include in the inductive assumptions that there is no justified
checkpoint of epoch e′′ ∈ [e− 1, e′] which conflicts with b.

The base cases are e and e + 1. Let’s first look at epoch e. Firstly, we
show that b does not get filtered out at any point in epoch e. By c3 (Line 8),
epoch(J(b)) = e−1, and, by a2, there cannot be conflicting justified checkpoints
at any epoch, so J(b) must be the highest justified checkpoint for any honest
validator in epoch e whose view includes b. Since J(b) is by definition justified
in b, b is not filtered out by any such honest validators in epoch e.

By Lemma 3, c1 (Line 6) implies pNb′ > 1
2(1−β) (1 +

Wp

WN
b

) ∀b′ ∈ chain(b).

Therefore, we can use Lemma 7, and conclude that pN
′

b > 1
2(1−β) (1 +

Wp

WN
b

)

∀N ′ ≥ N with epoch(N ′) = e. This in particular implies that all honest
votes in the remaining slots in epoch e go to the subtree of b. Therefore,
out of the remaining Wf votes from epoch e, ≥ (1 − β)Wf will vote for
(source = J(b), target = C(b)), since they vote for the subtree of b. By

definition, Sffg
C(b) is the FFG weight which is supporting C(b) already. Due

to assumptions a1 and a4, by the end of epoch e, the maximum FFG weight
that can be subtracted from Sffg

C(b) due to the adversary committing slashable

offences is min(αWt, β(Wt − Wf ), S
ffg
C(b)), where (Wt − Wf ) corresponds to

the weight of the validators that have yet to vote in the current epoch.
Therefore, at the end of epoch e, C(b) will have a total FFG support of

≥ Sffg
C(b) − min(αWt, β(Wt − Wf ), S

ffg
C(b)) + (1 − β)Wf , and this is ≥ 2

3Wt by

c2 (Line 7), so enough to justify it. By a2, this implies that no conflicting
checkpoint can be justified in epoch e, so that we have checked all conditions
for epoch e.

Let’s now move to epoch e + 1. Firstly, we show that b does not
get filtered out during it. For this to be the case, it is sufficient that
epoch(J(b)) =≥ (e + 1) − 2 = e − 1, which is true by c3 (Line 8), and that
b descends from the latest justified. Say the latest justified is J ′. By c3
(Line 8) and a2, either J ′ = J(b) or epoch(J ′) = e. In the first case, b clearly
descends from J ′. In the second case, J ′ = C(b), because we have already
shown that no checkpoint conflicting with b could be justified in epoch e.
Therefore, b does indeed not get filtered out in epoch e+1. Using this, and that
pN

′

b > 1
2(1−β) (1+

Wp

WN
b

) for N ′ the last slot of epoch e, we can now apply Lemma 7

to epoch e+1, and conclude that pN
′

b > 1
2(1−β) (1+

Wp

WN
b

) ∀N ′ in epoch e+1. In

particular, this implies that b is canonical in all honest views in epoch e+1, and
thus that the subtree of b receives all honest votes. This immediately implies
that no checkpoint conflicting with b can be justified in epoch e+1, by Lemma 8.

Before moving to the inductive step, for epochs > e + 1, we need one last
piece, i.e., that C(b) is justified in some branch descending from b, after the

11
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epoch transition to e + 2. To do so, we apply a3, which we can do because we
have shown that enough votes to justify C(b) are publicly available by the end
of epoch e, and that b ≻ C(b) is canonical in all honest views in epoch e + 1.
We conclude that, by the end of epoch e+ 1, there exists a block b′ ≻ b which
contains enough attestations to justify C(b), so that in fact C(b) is justified in
this branch after the epoch transition to e+ 2.

Finally, we can move to the inductive step. Consider some epoch e′ ≥ e+1,
for which all inductive assumptions are satisfied. Firstly, we show that b does
not get filtered out in epoch e′ + 1. At some point in epoch e′ + 1, let J ′ be
the highest justified. If J ′ = C(b), then b does not get filtered out, because
C(b) is justified in b′ ≻ b from the beginning of epoch e + 2 ≤ e′ + 1, so the
branch of b′ does not get filtered out. If b ≺ J ′, then clearly it does not get
filtered out, because the filtered tree will always contain the justified checkpoint,
even if there are no viable leaves. Therefore, b can only be filtered out if J ′ is
conflicting with b. By inductive assumption, there is no justified checkpoint
in epochs [e − 1, e′] which conflicts with b, so J ′ cannot conflict with b, since
epoch(J ′) ≥ epoch(C(b)) = e. Thus, b does not get filtered out.

As we have done in epoch e+1, we use this, and that pN
′

b > 1
2(1−β) (1+

Wp

WN
b

)

for N ′ the last slot of epoch e′, to apply Lemma 7 to epoch e′ + 1, and
conclude that pN

′

b > 1
2(1−β) (1 +

Wp

WN
b

) ∀N ′ in epoch e′ + 1. In particular, this

implies that b is canonical in all honest views in epoch e′ + 1, and thus that
the subtree of b receives all honest votes. As before, this immediately implies
that no checkpoint conflicting with b can be justified in epoch e′+1, by Lemma 8.

12
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4 Probability calculation on the assumption of
ratio of adversarial LMD votes

In this section we compute the probability that the assumption ∀N ≥ n, AN
b ≤

βWN
b holds.
Note that this section is still incomplete.

4.1 Ratio of adversary votes for two slots across an epoch
boundary

The first scenario consists in two consecutive slots across an epoch boundary. In
particular, we are interested in the probability that up to the end of the second
slot, the percentage of adversary votes to the total votes is at most β. Note that
some votes in the first epoch may be overlapped by votes in the second slot cast
by same set of validators.

We calculate it by computing∑
i
j≤β∧i≥0∧j≥S

Pr(A = i ∧W = j) (1)

In Eq. 4.1, i denotes the weight of effective adversary votes in the two con-
secutive slots, and j denotes the weight of total effective votes in the two slots,
where the first slot (slot 0, with S0 the set of votes from its committee) is the
last slot in the former epoch up to the epoch boundary and the second slot
(slot 1, with S1 the set of votes from its committee) is the first slot in the
latter epoch starting from the epoch boundary. Let C0 be the total adversary
votes and C1 be the total honest votes, with w = |C0|+ |C1| and C0 ∩ C1 = ∅.
Equivalently, we may (informally) write C0 = β · w. The voting weight of each
slot is S = |S0| = |S1|. Pr(W = j) is then the probability that the “effective”
weight of total votes in the two slots is j, i.e., W = |S0 ∪ S1| = j, and likewise,
Pr(A = i | W = j) is the (conditional) probability that given total “effective”
weight j the total “effective” adversary weight is i.

For computing Pr(A = i∧W = j), there are i effective adversary votes and
j − i effective honest votes to be taken into account altogether, and i ≤ j. In
order to enumerate all possible ways of getting i adversary votes in the union
of two slots, (1) we first select k adversary votes for S0, before completing
the remaining with S − k honest votes, and we require both 0 ≤ k ≤ i and
0 ≤ S−k ≤ j−i. Then (2) for S1, we select i−k non-overlapping adversary votes
out of C0−k adversary votes non-overlapping with S0, followed by (j−i)−(S−k)
honest votes out of C1 − (S− k) honest votes non-overlapping with S0. Finally,
(3) we complete the remaining (overlapping) votes in S1 out of S already selected
votes. We split in the following cases.

(1)

(
C0

k

)
·
(

C1

S − k

)

13
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(2)

(
C0 − k

i− k

)
·
(

C1 − (S − k)

(j − i)− (S − k)

)

(3)

(
S

S − (i− k)− ((j − i)− (S − k))

)
which is to select what remains in slot S1 of size S after whatever are
selected in (2)

After simplification for the cases in (1)-(3), we have Pr(A = i∧W = j) with
the following value. The sample space (the denominator) is formed by selecting
two slots of votes with replacement.

∑
0≤k≤i∧0≤S−k≤j−i

(
C0

k

)
·
(

C1

S − k

)
·
(
C0 − k

i− k

)
·
(

C1 − S + k

j − i− S + k

)
·
(

S

2S − j

)
(
w

S

)
·
(
w

S

)

4.2 A general formula for the ratio of adversary votes by
the end of the next (new) slot

This section is yet to be completed.
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