
Stackelberg Attack on Protocol Fee Governance

Alex Hajjar∗

Butter

February 2024

Abstract
Abstract. We establish a Stackelberg attack by Liquidity Providers against
Governance of an AMM, leveraging forking and commitments through
a Grim Forker smart contract. We produce a dynamic, block-per-block
model of AMM reserves and trading volume in the presence of competing
forks, derive equilibria conditions in the presence of protocol fees, and
analyze Stackelberg equilibria with smart contract moves.
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1 Introduction
We introduce the concept of an absolute commitment, where agents have a more
‘absolute’ ability to commit to strategies than is usually the case in games. In
particular

Protocol fees are used by diverse DeFi protocols as a means to allow value to
be captured by the governing DAO [1, 5]. Fees can then be used to produce
dividends for token holders, or to accumulate treasury value [6]. In both cases,
they allow the governance token to gain value, thus justifying investability in the
protocol. Importantly, some major protocols, like Uniswap, haven’t activated
the protocol fee to date.

Protocol fees are taken from some protocol participants revenue. In the case of
Uniswap, protocol fees are deduced from Liquidity Provider (LP) fees [1]. This
dynamic creates an adversarial setting where LPs have diverging interests from
the DAO (Governance).

Related work. [8] produces conditions on Stackelberg equilibria between stake-
holders of a stablecoin system, including governance as a player and protocol
parameter setting as action space. Such models are still to be studied in context
of AMM protocol fee governance. In this paper, we aim at producing a framework
for deriving Stackelberg equilibria between LPs allocating reserves among an
AMM and its fork and Governance of the original AMM setting a protocol fee.

[7] introduces contracts as Stackelberg equilibria where smart contract moves
are introduced in a game-theoretic setting. Drawing on it, [9] studies some
Stackelberg attacks based on commitments enabled by smart contracts. We
define Grim Forker smart contracts as a case of Stackelberg attacks. Such
contracts are used by LPs to change the equilibria in their favor, to the detriment
of Governance.

We focus on Constant Function Market Makers. We briefly introduce the core
components of these systems and refer to [2] for further details.

This paper. We formalize a game-theoretic model of competition among two
forks of the same Automated Market Maker (AMM) pool, whereby we observe
rational behavior of AMM users (LPs, traders and Governance).

We study these competition games in a in a dynamic system setting, block-per-
block, with protocol fee rate and on initial conditions as parameters.

We finally adjunct a metagame played by LPs against Governance, where they
can commit to strategies that automatically deploy their reserves among the
competing forks, depending on conditions. We introduce the Grim Forker
contract as an instance of a Stackelberg attack.

This produces new Stackelberg equilibria to the competition game. This allows
us to define which protocol-fee-setting strategies Governance should rationally
follow.
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This paper will be limited to the analysis of a single pool in an AMM like
Uniswap v2, but the results can be generalized to multiple pools and to Uniswap
v3-like AMM tick-per-tick.

2 Model
2.1 Automated Market Maker
We define an Automated Market Maker as being a 2-token pool, similar to
Uniswap v2.

Definition 1 (Automated Market Maker (AMM)). An Automated Market Maker
(AMM) is defined by the tuple (α, β, R, V, γ, ϕ), where:

• α is the first token type,

• β is the second token type,

• R represents the amounts in reserves,

• V is the traded volume over a period of time,

• 1 − γ is the percentage fee,

• ϕ is the protocol fee.

By convention, R denotes the reserves in α, and V denotes the volume in α.
For the rest of this paper, any quantity that denotes an asset will use the same
convention.

In the following allocation games, we will consider two AMMs which are in the
most direct kind of competition, or Competing AMM Forks.

Definition 2 (Competing AMM Forks). Two AMMs (α, β, Ra, Va, γ, ϕa) and
(α, β, Ra, Va, γ, ϕa) are competing when:

• they share the same token types α and β,

• they share the same fee level γ,

• they are operated by the same smart contract code on the same blockchain,
thus resulting in identical blockchain transaction costs for performing a
trade.

In the rest of this paper, when considering Competing AMM Forks, Ax will
systematically denote (α, β, Rx, Vx, γ, ϕx).

For the purposes of analyzing equilibria under competition, we will want to
observe two competing AMM forks where one is a clear market leader with the
following condition.

Definition 3 (Market Leader Condition). Two Competing AMM Forks Aa and
Ab verify the Market Leader Condition when Va > Vb and Ra > Rb.
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This will also enable our analysis to focus on cases where the ratio of reserves
always starts strictly higher than 50% in favor of the larger AMM.

2.2 Trader volume allocation
We now model traders and LPs so as to reason about how they will behave
when presented with the option to allocate their trades or reserves to any of two
competing AMM forks.

We assume traders to be profit maximizing. Their net value received from a
trade on a given AMM is modeled as TradeValue − Fees − PriceImpact − TxCost,
with:

• TradeValue: the payoff from trading, specific to the trader’s preferences
and independent of the AMM,

• Fees: the AMM trading fees,

• PriceImpact: the cost resulting from the price impact of the trade, specific
to the AMM reserves and to the size of the trade,

• TxCost: the blockchain transaction costs, specific to the AMM, but equal
when comparing Competing AMM Forks.

The PriceImpact term can be derived from [2] equation (7) where we consider
the price impact to be equal to the price gap compared to a perfect market with
infinite reserves. For a given AMM Aa:

PriceImpact = muγ−1
(

(δ∆)2

Ra
+ O

(
(δ∆)2

R2
a

))
with mu the AMM price of coin α and ∆ the amount of coin α traded.

The TxCost term plays an important role in that it contributes an incentive for
traders to use a single AMM for their trades rather than spread them freely over
multiple AMMs. This incentive will impact the equilibrium condition and result
in network effects appearing.

This term assumes the traders will pay the AMM tx costs for each interaction
independently. Other options would exist like using Dex aggregators which
would produce a different cost profile, but it is reasonable to assume any such
cost profile would always result in an incentive to use a single smart contract
interaction rather than multiple ones.

Definition 4 (Trader Allocation Game). A trader aims to exchange tokens α
for tokens β, with the choice to allocate trading volume ∆ among two competing
AMM forks Aa and Ab. Let δ ∈ [0, 1] represent the proportion allocated to Aa,
with the remaining fraction (1 − δ) allocated to Ab.

The trader’s utility is defined as
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Ut(∆, δ) = TradeValue(∆)
−Fees(∆)

−muγ−1
(

(δ∆)2

Ra
+ ((1 − δ)∆)2

Rb
+ O

(
(δ∆)2

R2
a

)
+ O

(
((1 − δ)∆)2

R2
b

))
−

{
c0 if δ ∈ {0, 1}
2c0 otherwise

where c0 the transaction cost for performing a swap on either of the two AMMs,
considered constant, and mu the ratio between reserves in token β and token α,
considered equal across AMMs (no-arbitrage condition).

Note that the blockchain transaction costs are doubled if the allocation is split.

As we are only looking for equilibria in an allocation game, let’s use a simplified
utility keeping only terms that vary with the allocation proportions and sim-
plifying out fixed multiplicative terms. Let’s also consider only small enough
trades so that quadratic terms are negligible.

Definition 5 (Small Trader Allocation Simplified Utility). Assuming two com-
peting AMM forks, we define the trader’s simplified utility, assuming ∆ fixed,
as

ut(δ) = − δ2

Ra
− (1 − δ)2

Rb
−

{
c if δ ∈ {0, 1}
2c otherwise

(1)

with c = c0γm−1
u ∆−2.

This is a concave function on (0, 1) discontinuity at δ = 0 and δ = 1. We can
easily see that the maximum on (0, 1) will be the proportions of reserves.

Lemma 1.
arg max

(0,1)
ut = Ra

Ra + Rb

Thus we observe that under the Market Leader Condition, some traders will
prefer to allocate all their trade volume to the leading AMM rather than seek the
maximum described above, as long as the blockchain transaction costs are large
enough to them. This will be further studied below in our equilibria analysis.

Let’s denote σ, the proportion of such traders. We will assume that this
proportion is constant throughout Trader Allocation Games under the Market
Leader Condition in this paper. This reasonable assumption will be enough to
enable network effects.

Definition 6 (Sensitive Traders Proportion). In any Trader Allocation Game
under the Market Leader Condition, σ in [0, 1] is defined so that:
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• σ is the proportion of traders for whom arg max
[0,1]

ut = 1,

• (1 − σ) is the proportion of traders for whom arg max
[0,1]

ut = Ra

Ra+Rb
.

2.3 LP reserves allocation
Definition 7 (LP Allocation Game). A Liquidity Provider (LP) aims to allocate
reserves (assumed only in token α for simplicity), with the option to allocate a
total of r among two competing AMM forks Aa and Ab. Let ra ∈ [0, r] represent
the amount allocated to Aa, with the remaining rb = r − ra allocated to Ab.

The LP’s utility is given by

Ul(r, ra) = (1 − γ − ϕa)Va
ra

Ra + ra
+ (1 − γ − ϕb)Vb

r − ra

Rb + r − ra

Ul is based on the definition of LP returns and protocol fee in [1].

This results in the Taylor expansion:

Ul(r, ra) = (1−γ −ϕa)Va
ra

Ra
+(1−γ −ϕb)Vb

r − ra

Rb
+O

(
r2

a

R2
a

)
+O

(
(r − ra)2

R2
b

)
Let’s thus approximate the utility for small LPs, who have reserves negligible
compared to the total reserves of any of the two AMMs.

Definition 8 (Small LP Utility).

ul(r, ra) = (1 − γ − ϕa)Va
ra

Ra
+ (1 − γ − ϕb)Vb

r − ra

Rb
(2)

Leveraging ut and ul will allow us to derive equilibria for both allocation games.

2.4 Aggregate allocation
We want to further study the evolution through time of competing AMM forks
Aa and Ab. For that, we want to observe the evolution of Va/V and Ra/R.

This will enable analyzing which parameters influence equilibria and which
conditions produce (resp. prevent) a self-reinforcing network effect.

To that end, we define two sequences that capture the dynamic of repeated
games through blocks and model the occurrence of trades and reserves allocation
as a series of sequential allocation games within a block

We further want to assume that the aggregate volume and reserve allocated by
traders at any time step are constant, so as to focus our inquiry on the dynamics
between the two AMMs.
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Definition 9 (Block Allocation Game). Blocks are denoted by their indexes
i ∈ N.

We consider Aa and Ab which verify:

• the total allocated trade volume per block, V = (Va)i + (Vb)i is constant for
all i ≥ 0,

• the total amount of reserves R = (Ra)i + (Rb)i is constant, for all i ≥ 0,

with AMM notation expanded to include ((V·)i)i≥0 the trade volume per block
and ((R·)i)i≥0 the reserves amount per block.

A Block Allocation Game is constructed by sub-games for each blcok i ≥ 0 in the
following order:

• Block Traders Allocation Game: repeated sequential Trader Allocation
Games so that the sum of trades allocated is equal to the volume per block
V ,

• Block LPs Allocation Game: repeated sequential LP Allocation Game so
that the sum of reserves allocated is equal to R.

From here onward, any mention of AMM forks will refer to this definition.

Note that the entirety of reserves, R, is allocated anew by LPs at each block.
This simplifying measure will enable us focusing on how equilibria emerge, even
if sacrificing modeling accuracy.

Taking into account multiple forms of transaction costs for LPs would result in
only a fraction of R being reallocated at each round, which makes the dynamic
system move slower, but arguably still in the same direction.

More generally, picking a different definition for Block Allocation Games might
yield slightly different results down the line, thus might be worth exploring to
refine the model.

To further simplify, we also assume that all traders playing the Block Traders
Allocation Games make small-enough trades. Hence, for the purpose of analyzing
equilibria, we will define their utility as the Small Trader Allocation Simplified
Utility ut. Equivalently, we assume that all LPs entering any Block LPs Allo-
cation Game have reserves negligible compared to the total reserves so we can
define their utility as the Small LP Utility ul.

Note that these simplifications will only matter as a way to calculate equilibria,
thus need only be good local approximations. For example, if we assume that in
an average Ethereum block a large proportion of LP reserves allocation are of
the small kind, these will be robust.

Nevertheless, we might be losing modeling accuracy with respect to blocks where
a single large LP is making a large move. Such events could produce sudden
variations, which could be modeled as stochastic terms. It is outside of the scope
of this simple model and could be suggested as a refinement.
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Next, we define our dynamic system based on allocation ratios rather than
volume and reserves amounts, leveraging the Block-Competing AMM Forks
constraints on V and R being constant thus unnecessary to include in our model.

Definition 10 (Allocation Ratios). Given two Block-Competing AMM forks
Aa and Ab, along with an initial block indexed 0 (by convention), (Ti)i≥0 and
(Li)i≥0 are sequences with values in [0, 1] defined by the recurrence relations:

• T0 = (Va)0
(Va)0+(Vb)0

• L0 = (Ra)0
(Ra)0+(Rb)0

• Ti = BlockTradersAllocation(Ti−1, Li−1)

• Li = BlockLPsAllocation(Ti, Li−1)

where

• BlockTradersAllocation represents the outcome of the Block Traders Alloca-
tion Game as a function of previous block state

• BlockLPsAllocation represents the outcome of the Block LPs Allocation
Game as a function of the outcome of Block Traders Allocation Game and
of previous block state.

(Ti) represents the aggregate swap volume allocation ratio to Aa. (Li) represents
the aggregate the aggregate reserves allocation ratio to Aa.

3 Equilibria analysis
3.1 No fee scenario: network effects
If two AMM forks follow the Market Leader Condition, we want to observe how
network effects apply and make the leader a monopoly. For that, we analyze the
dynamic system described by (Li) and (Ti).

We will assume that (Li) > 0.5 and (Ti) > 0.5 throughout this section unless
otherwise specified.

Proposition 1 (Block Traders Allocation Rule). In a Block Allocation Game
under the Market Leader Condition,

∀i > 0, Ti = σ + (1 − σ)Li−1

Proof. Follows from the Sensitive Traders Proportion definition applied to every
Trader Allocation Game in any Block Traders Allocation Games.

Proposition 2. In a Block Allocation Game under the Market Leader Condition
with ϕa = ϕb = 0

∀i > 0, Li = Ti
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Proof. Follows from observing that the equilibrium condition for any LP Alloca-
tion Game in a Block LPs Allocation Game is ∂ul

∂ra
= 0 which is equivalent to

Ra

Va
= Rb

Vb
hence Ra

R = Va

V .

Proposition 3. In a Block Allocation Game under the Market Leader Condition
with ϕa = ϕb = 0

lim
i→∞

Li = 1

Proof. Li = σ + (1 − σ)Li−1 thus (Li) is strictly increasing. And it is bounded
by 1.

3.2 Leader with fee scenario: equilibrium condition on fee
If the market leading AMM enables a protocol fee ϕa > 0 while the fork doesn’t,
we expect that some players will allocate less to the leading AMM. We want to
look into when it produces a non-monopoly equilibrium.

In this sub-section, we assume Aa’s protocol fee is permanently set to ϕa.

Proposition 4. In a Block Allocation Game under the Market Leader Condition
with ϕa > 0 and ϕb = 0

∀i > 0, Li = 1 − γ − ϕa

1 − γ − ϕaTi
Ti

Proof. Follows from deriving the maximum ul as a function of ra, shown in
equation (2), with ϕb = 0.

We can observe that, as Ti ∈ [0, 1], for i > 0 we have Li < Ti. This corroborates
the idea that introducing the fee in Aa reduces its attractiveness for LPs and
thus hinders the network effects.

Proposition 5 (Leader Fee Equilibrium). In a Block Allocation Game under
the Market Leader Condition with ϕa > 0 and ϕb = 0, and assuming that T0 is
not null, the dynamic system will be at equilibrium either

• when Ti = 1,

• when ϕa = σ(1 − γ)T −1
i .

Proof. T0 ≠ 0 induces Ti ̸= 0 for all i. Then the equation follows from solving
the equilibrium equation constructed by combining the Leader Fee Block LPs
Allocation Rule with the Block Traders Allocation Rule.

Note that whenever Ti0 = 1, it results that Ti = Si = 1 for any i > i0 and the
system won’t move. This notably means that introducing any fee at this point
will not make the system move at all.
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Typical values are γ = 0.003 and ϕ = 0.0006 as per [1]. We assume σ = 0.2 to be
a reasonable approximation. In these conditions, σ(1 − γ)ϕ−1

a > 1 thus making
the second equilibrium condition unachievable. In such cases, equilibrium can
only be achieved when Ti = 1.

To illustrate aggregate players behavior depending on how the actual protocol fee
is set, let’s suppose it is set so that ϕa < σ(1 − γ)T −1

i . This produces additional
interest from LPs to allocate to Aa, thus making both reserves and volume
allocated to Aa increase through time until equilibrium is reached.

Also, whenever the fee is high enough, trade volume and reserves allocation to
Aa will eventually become lower than half of the total, canceling the Market
Leader Condition. It is easy to observe that in that case, a mirror situation
where Ab becomes market leader in the Block Traders Allocation Rule thus
producing reserved network effects in favor of it. This will help define an upper
bound on ϕa for this not to happen.

Formally:

Theorem 1 (Asymptotic Allocation). Under the same premises as the Leader
Fee Equilibrium proposition,

• 2σ(1−γ) < ϕa implies (Ti)i≥0 and (Li)i≥0 are decreasing and limi→∞ Ti =
0.

• σ(1 − γ)T −1
0 < ϕa < 2σ(1 − γ) implies (Ti)i≥0 and (Li)i≥0 are decreasing

and limi→∞ Ti = σ(1 − γ)ϕ−1
a

• ϕa < σ(1 − γ)T −1
0 implies (Ti)i≥0 and (Li)i≥0 are increasing and

limi→∞ Ti = min(1, σ(1 − γ)ϕ−1
a )

Proof. First point follows observing that by monotonicity ∃k > 0 where the
Market Leader Condition becomes reversed and updating the Traders Allocation
Rule for i ≥ k with Ti = (1 − σ)Li−1. Second and third point follow from
assuming Market Leader Condition doesn’t change, applying both Allocation
Rules and noting Ti ∈ [0, 1].

4 Stackelberg attack
Having established the basic equilibrium condition for such AMM forks where
the leader imposes a protocol fee, let’s now include the governance of the AMM
(Governance) as a player who can change the AMM protocol fee at any block.

We assume for the sake of the argument that Governance is profit maximizing
and that the protocol fee is entirely directed to itself as a payoff. Note that
Governance would usually be comprised of governance token holders.

As a new starting point, we consider only one AMM without forks yet.
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Intuitively, it appears that, as long as LPs’ preferences are entirely represented
by their LP Allocation Game utility (notably, if they don’t own governance
tokens), then they would be ready to fork the AMM and start using the feeless
fork, any time when it becomes more profitable to do so.

We assume that LPs can commit to new strategies, including deploying smart
contracts that may allocate reserves on their behalf. In line with [7], [9], we
observe Stackelberg equilibria emerging from smart contract moves.

We will derive the Grim Forker, a simple smart contract that allows LPs to
commit to fork the AMM and lock their reserves there, whenever the fee is
higher than a defined threshold. This aims at forcing Governance to not move
fees higher than the threshold.

Let’s further assume for simplicity that deployment and interaction of such smart
contracts incurs negligible costs to LPs.

4.1 Governance player
Definition 11 (Governance Fee Setting Game). Using notation from the Block
Allocation Game, a Governed AMM Agov’s protocol fee is denoted by a sequence
evolving through time (ϕgov)i≥0.

The Governance player’s action space consists of updating (ϕgov)i at any block i
with a value in [0, 1 − γ).

Governance’s payoff at each block i is given by

(ug)i = (ϕgov)i(Vgov)i

And its utility is represented by the expected value of payoffs

Ug =
∞∑

i=i0

(ϕgov)i(Vgov)iδ
−i

with δ a discount factor in (0, 1).

4.2 Grim Forker contract
Let’s describe Grim Forker, a smart contract which constitutes a Stackelberg
attack in the sense of [9]: it enables LPs to commit to a specific strategy based
on some parameters, with the goal of influencing Governance to reduce the fee
as much as possible.

The proposed contract consist of:

• a vault (in line with [10]) which acts as a LP itself on Agov and which
funds are kept available for withdrawal before the fork, but are locked after
the fork happens,
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• a clause to fork the AMM when some key conditions are met, notably
depending on a maximum fee value ϕthreshold which is a parameter of the
contract.

Note that the locking of the funds after the fork aims at producing a large
enough penalty on Governance expected earnings. The duration of this lock can
be modulated as a parameter as well.

Let’s describe the forking pseudocode, which is going to be run at each block:

Algorithm 1 Forking Routine
if ϕgov > ϕthreshold and RGrimF orker > Rgov/2 then

Deploy fork of AMM
Withdraw reserves from AMM
Allocate reserves to fork
Prevent withdrawal (for some period)

end if

with RGrimF orker the amount of reserves that have been allocated to this contract.

We can define a new, adapted, allocation game to account for the fork.

Definition 12 (Fork Block Allocation Game). Given an AMM Agov and a its
newly forked Afork, a Fork Block Allocation Game is constructed by sub-games
in the following order:

• Grim Forker LPs Auto-Allocation: execution of the forking routine, allo-
cating all RGrimF orker to Afork,

• Block Traders Allocation Game,

• Block LPs Allocation Game.

4.3 Stackelberg equilibrium
We can now describe the metagame that happens between LPs and Governance
where LPs add the deployment of specific Grim Forker instances to their action
space.

Definition 13 (Grim Forker Game). Players are defined by

• Governance, whose utility is Ug,

• LPs who participate in Grim Forker, or GFLPs.

The game happens in the following steps:

• GFLPs deploy a version of Grim Forker with some parameters,

• Governance adjusts ϕgov accordingly.

Assuming that more that half of reserves are allocated to Grim Forker, as
Governance aims at maximizing its utility Ug, it is presented with two choices:
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• prevent Grim Forker from launching the fork while maximizing Ug, thus
setting ϕgov = ϕthreshold and gaining Ug =

∑∞
i=ifork

ϕthresholdV δ−i =
ϕthresholdV (1 − δ)−1,

• let Grim Forker launch the fork if the clause is met and maximize the yield
of Ug =

∑∞
i=ifork

(ϕgov)i(Vgov)iδ
−i by playing on ϕgov.

The second option requires more complex modeling but we know that (Vgov)i

tends towards 0 in this case thanks to Theorem-1. It might still be the rational
option if the discount factor is chosen particularly low as part of Governance’s
preferences.

Low δ could reflect a large proportion of short-term-minded governance par-
ticipants, who would thus try to influence Governance in making the second
choice.

We can now derive the conditions for participation of LPs.

Theorem 2 (Grim Forker Participation). It is ex-interim individual rational
for LPs to allocate their reserves to Grim Forker if

• they don’t have conflicting interests with Governance: their entire prefer-
ences are represented by ul,

• they assume that Governance will prefer preventing the fork.

Proof. First, the equivalent amount of reserves allocated in Grim Forker or
directly in the AMM yields the same returns. Hence, leveraging the assumption
that transaction costs are negligible, it is indifferent for LPs to allocate to the
AMM directly or to Grim Forker as long as the forking is not triggered.

Second, LPs would prefer allocating their reserves through Grim Forker to keep
the protocol fee below ϕthreshold.

Further refinements to the model could include refining preferences for LPs who
are also part of Governance, adding more costs and risks (e.g., development,
legal) and accounting for delays.

4.4 Market-sourced equilibrium condition
The Grim Forker contract depends on ϕthreshold, the RGrimF orker threshold, and
the duration of locking funds as parameters.

Further, more involved modeling of these parameters would result in higher par-
ticipation from LPs. Simple competition among different Grim Forker contracts
could be leveraged to let emerge what LPs agree on being the best estimation al-
gorithm. A downside of this approach is liquidity fragmentation among multiple
Grim Forker contracts, thus reducing efficiency.
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Another approach would be to embed this market sourcing objective within
the Grim Forker smart contract, so as to make, for example, the algorithm for
ϕthreshold evolve through time. This would solve the liquidity fragmentation
issue but at the price of higher smart contract complexity.

5 Conclusion
We have produced a dynamic, block-per-block, model for traders volume alloca-
tion and LPs reserves allocation among two AMM forks. We have established
asymptotic closed-form values for reserves and trade volume allocation ratios.
Assuming reasonable real-world constraints on protocol fee rate, this result points
towards an indisputable natural monopoly of the market-leading AMM among
its forks, thus removing any benefit of fork-based competition for LPs who are
thus at risk of losing part or all of their revenue to Governance.

We introduced a Grim Forker contract as a Stackelberg attack of LPs on Gover-
nance, and shown that this creates a new equilibrium, basically giving bargaining
power to LPs. Depending on the participation rate in the contract, this attack
can force Governance into reducing protocol fees, otherwise risking to see the
original AMM be drained of all of its reserves.

In turn, Grim Forker contracts, by leaving their participation rate openly au-
ditable, instruct Governance on how to operate their protocol fee management
in an optimal way. Introducing obfuscation techniques as in [4, 3] would hin-
der auditability and change the game dynamics, requiring a different modeling
treatment.
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