
A zk-evm specification

Olivier Bégassat, Alexandre Belling, Théodore Chapuis-Chkaiban, Franklin Delehelle,
Blazej Kolad, Nicolas Liochon

October 2022

Contents

0.1 Purpose . 6
0.2 Context and results . 6
0.3 Conventions . 6
0.4 Organization . 7
0.5 Suggestions for reading this document . 10

1 Hub 11
1.1 Columns . 11

1.1.1 Conventions . 11
1.1.2 Column descriptions . 12

1.2 Stack . 14
1.2.1 Heartbeat . 14
1.2.2 Counter constancy . 14
1.2.3 Height range . 15
1.2.4 Zero padding . 15
1.2.5 Stack exceptions . 15
1.2.6 Call stack depth exception . 16

1.3 Stack patterns . 16
1.3.1 Purpose . 16
1.3.2 Expected outcome . 17
1.3.3 Empty stack item . 19
1.3.4 Stack exception pattern . 19

1.4 One line instruction stack patterns . 19
1.4.1 Disclaimer . 19
1.4.2 (0,0)-pattern . 19
1.4.3 (0,1) and (1,0) patterns . 20
1.4.4 (1,1) and (2,0) patterns . 21
1.4.5 (2,1) and (3,1) patterns . 23
1.4.6 DUP_X-pattern . 24
1.4.7 SWAP_X-pattern . 25
1.4.8 RETURN/REVERT pattern . 26
1.4.9 Copy pattern . 27

1.5 Two line instruction stack patterns patterns . 29
1.5.1 Disclaimer . 29
1.5.2 LOG_X pattern . 29
1.5.3 Call pattern . 31
1.5.4 Create pattern . 33

1.6 Constraints . 34
1.6.1 Stack consistency . 34
1.6.2 Program counter, PUSHes and JUMPs) . 36
1.6.3 Miscellaneous flags . 37

1

1.6.4 Gas . 38
1.7 Workflow . 40

1.7.1 Module selectors . 40

2 MMU 43
2.1 Column descriptions . 43
2.2 Offset preprocessing . 45

2.2.1 Absolute and relative offsets . 45
2.2.2 RAM constancy . 46
2.2.3 Columns established during precomputation . 46
2.2.4 Binary, ternary, nibble and byte columns . 47
2.2.5 Heartbeat . 47
2.2.6 Byte decomposition constraints . 49
2.2.7 Data organization . 49

2.3 Combinatorics of overlapping intervals . 52
2.3.1 Purpose . 52
2.3.2 Data . 52

2.4 Constraints . 55
2.4.1 Parametrized instruction decoding, preprocessing and constraints 55
2.4.2 Setting the FAST flag . 56
2.4.3 Type 1 . 56
2.4.4 Type 2 . 59
2.4.5 Type 3 . 63
2.4.6 Type 4 . 65
2.4.7 Type 4 when TERN = 0 . 67
2.4.8 Type 4 when TERN = 1 . 68
2.4.9 Type 4 when TERN = 2 . 74
2.4.10 Type 5 . 76

3 MMIO 80
3.1 Outline of the RAM arithmetization . 80

3.1.1 RAM instructions . 80
3.1.2 Column descriptions . 80

3.2 Specialized constraints . 84
3.2.1 Binary constraints . 84
3.2.2 Binary plateau constraints . 84
3.2.3 Power constraints . 85
3.2.4 Byte decomposition constraints . 86
3.2.5 Suffix extraction . 86
3.2.6 Prefix extraction . 86
3.2.7 Chunk extraction . 87

3.3 Module consraints . 87
3.3.1 Heartbeat . 87
3.3.2 Byte decomposition constraints . 88
3.3.3 Bytehood constraints . 88
3.3.4 Counter constancy . 88

3.4 Limb transplants . 89
3.4.1 Purpose . 89
3.4.2 RAM to RAM . 90
3.4.3 Exodata to RAM . 91
3.4.4 Exodata and RAM agree . 91
3.4.5 Killing RAM slots . 91

2

3.4.6 RAM to stack . 92
3.4.7 Stack to RAM . 93
3.4.8 Transaction call data to RAM . 93

3.5 Surgical patterns . 96
3.5.1 Purpose . 96
3.5.2 Single byte swap . 96
3.5.3 Excision . 97
3.5.4 [1⇒ 1 Padded] . 98
3.5.5 [2⇒ 1 Padded] . 99
3.5.6 [1 Full⇒ 2] . 100
3.5.7 [2⇒ 1 Full] . 102
3.5.8 [1 Partial⇒ 1] . 102
3.5.9 [1 Partial⇒ 2] . 104
3.5.10 [2 Full⇒ 3] . 105
3.5.11 [3⇒ 2 Full] . 106

3.6 Limb surgery . 107
3.6.1 Data sources and targets . 107
3.6.2 Which opcodes require what surgeries . 108
3.6.3 RAM to RAM . 110
3.6.4 Exogenous data to RAM . 111
3.6.5 RAM to exogenous data . 112
3.6.6 Stack to RAM . 114
3.6.7 RAM to stack: aligned offsets . 114
3.6.8 RAM to stack: non-aligned offsets . 115

3.7 Consistency constraints . 122
3.7.1 Call stack consistency . 122
3.7.2 Concatenated columns and order . 123
3.7.3 Memory consistency constraints . 124

4 ROM 126
4.1 The ROM module . 126

4.1.1 Introduction . 126
4.1.2 ROM specific terms . 126
4.1.3 Trace columns . 127
4.1.4 Constraints . 129
4.1.5 Constraints related to PUSH instructions . 136
4.1.6 Contract Address comparisons . 137

5 Out of bounds 139
5.1 Columns . 139

5.1.1 Purpose . 139
5.1.2 Column descriptions . 139

5.2 Heartbeat . 140
5.3 Constraints . 141

5.3.1 Bytehood, byte decompositions, binary and ternary checks 141
5.3.2 CALLDATALOAD specific instructions . 141
5.3.3 RETURNDATACOPY specific instructions . 142
5.3.4 JUMP / JUMPI specific instructions . 143
5.3.5 RETURN specific instructions . 143

3

6 Memory expansion 145
6.1 Memory expansion module . 145

6.1.1 Introduction . 145
6.1.2 Columns . 146
6.1.3 Offset bounds . 148

6.2 General constraints . 149
6.2.1 Heartbeat . 149
6.2.2 Counter constancy . 150
6.2.3 ROOB flag . 150
6.2.4 NOOP flag . 151
6.2.5 Byte decompositions . 152

6.3 Specialized constraints . 152
6.3.1 Standing hypothesis . 152
6.3.2 Max offsets . 153
6.3.3 Offsets are out of bounds . 153
6.3.4 Offsets are in bounds . 154

6.4 Consistency constraints . 155

7 Gas 157
7.1 Purpose . 157

7.1.1 Purpose . 157
7.1.2 Triggers . 157

7.2 Columns . 157
7.2.1 Column descriptions . 157

7.3 Constraints . 158
7.3.1 Heartbeat . 158
7.3.2 Constancy constraints . 160
7.3.3 Byte decompositions . 160
7.3.4 The LARGE_BYTE_DECOMPOSITION_FLAG 160
7.3.5 Target constraints . 161

8 Storage 163
8.1 Storage module . 163

8.1.1 Storage instructions . 163
8.1.2 Column descriptions . 163

8.2 Constraints . 165
8.2.1 Heartbeat . 165
8.2.2 Prewarmed storage keys . 165
8.2.3 Instruction related constraints . 166

8.3 Consistency . 168
8.3.1 Batch level consistency . 168
8.3.2 Transaction level consistency . 170
8.3.3 Gas constraints . 171

9 Word comparison 175
9.1 Word comparison module . 175

9.1.1 Introduction . 175
9.1.2 Columns . 175

9.2 Constraints . 176
9.2.1 Heartbeat . 176
9.2.2 Counter constancy constraints . 176
9.2.3 Byte decompositions, bytehood and binaryness 176

4

9.2.4 OLI constraints . 176
9.2.5 Target constraints . 177
9.2.6 Result constraints . 177

10 Binary 178
10.1 Constraint set for the Binary module. 178

10.1.1 Binary Instructions . 178
10.1.2 Columns . 178
10.1.3 Lookup tables and Plookup constraints . 181
10.1.4 Technical constraints . 182
10.1.5 Shift-instruction constraints . 193
10.1.6 Pivot-instruction constraints . 195

11 ALU 198
11.1 ALU Dispatcher . 198

11.1.1 ALU DISPATCHER . 198
11.2 ALU 264 . 224

11.2.1 ALU256 . 224
11.3 ALU 64 . 235

11.3.1 ALU64 . 235

12 EXP dynamic gas 237
12.1 Exponent module . 237

12.1.1 Introduction . 237
12.1.2 Columns . 237

12.2 General constraints . 238
12.2.1 The DOBD flag . 238
12.2.2 Heartbeat . 238
12.2.3 Byte decomposition . 238
12.2.4 Target constraints . 238
12.2.5 PLATEAU_BIT constraints . 239
12.2.6 〈SIZE〉 constraints . 239

13 Address Shaving 240
13.1 Address shaving module . 240

13.1.1 Introduction . 240
13.1.2 Columns . 240

13.2 Constraints . 241
13.2.1 Heartbeat . 241
13.2.2 PBIT contraints . 241
13.2.3 Byte decomposition . 241
13.2.4 Target constraints . 241

5

Introduction

0.1 Purpose
The present document is a revised and expanded version of a previous (partial) specification of a
zk-evm.

0.2 Context and results
Rollups are a family of powerful scaling technologies which promise to considerably increase the ca-
pacity of the Ethereum Blockchain. An introduction to Rollups, zk-EVMs and their role in improving
Ethereum capacity can be respectively found in [1, 2]. Multiple attempts at building scalable and
practical rollup solutions have been positively received. zkSync [3], for instance, transpiles Yul into
a zk-VM friendly bytecode. Cairo [4], on the other hand, uses a custom architecture adapted to an
efficient STARK prover for smart contracts written in Cairo . Other projects, such as Hermez [5] or
Scroll Tech [6] and this project aim to interpret native EVM bytecode, without transpilation or further
compilation steps.

0.3 Conventions
Throughout the document we use a number of notational conventions which we explain here. These
conventions apply to column names and are meant to clarify the origin and purpose of certain columns
within a given trace. Others should be viewed as constructors which define new columns from existing
ones.

Modules have three letter identifiers. The named modules are the following:

Module stamps. Module stamps count calls to a given module; most modules have a single stamp
though the hub and ALU have several. Stamp columns are adorned with a � , thus the STO � is
the module stamp of the storage module. Module stamps are typically computed/updated in the hub
module whose main purpose is to dispatch (paid for an otherwise valid) instructions to the module(s)
that are equipped to carry them out. Associating a unique identifier (i.e. stamp) to such “module-
calls” is crucial when the order of operations matters. This is the case for instructions pertaining to
(address) warmth (i.e. the WRM module), required gas computations (i.e. GAS), RAM (i.e. MMU
and RAM), the stack (i.e. HUB), storage (i.e. STO), . . . to cite a few. Stateless modules such as
the modules handling arithmetic (i.e. the ALU module), binary (i.e. BIN) or word comparison (i.e.
WCP) opcodes don’t require a time stamp per se yet are given one nonetheless. (e.g. the address
warmth module corresponds to the three letter identifier WRM); the corresponding stamp column is
that identifier followed by � (e.g. HUB �).

6

https://ethresear.ch/t/a-zk-evm-specification/11549
https://ethresear.ch/t/a-zk-evm-specification/11549

Imported columns. Angular parentheses 〈 · · · 〉 signal columns whose contents are imported from
other modules by means of a lookup argument. By way of example: all modules1 import their module
stamp from the hub. Modules tasked with executing certain opcodes will typically import values from
the stack (e.g. pairs of stack values 〈 kVAL hi〉, 〈 kVAL lo〉, for various k ∈ {1, 2, 3, 4}.) Many modules
also imports values that aren’t borrowed from the stack. E.g. the hub module imports the instruction
〈INST〉 from the ROM, e.g. the GAS module imports the current, new and endowment gas values
(GASκ, GASν and GASε respectively) from the hub, e.g. the OOB module imports execution context
dependent data such exception flags, the size of return data 〈RDS〉, the size of call data 〈CDS〉 or the
code size 〈CODESIZE〉.

Decoded columns. A particular case of the above arises with decoded columns. Those are
columns whose contents are extracted from a hardcoded collection of columns using a lookup argument.
They are adorned with a lozenge as in ♦COL. By way of example: the hub contains various instruction
decoded flag columns but also a ♦STACK_PATTERN column whose contents are deduced from an
immutable reference table called the instruction decoder. Similarly the binary module imports the
results of binary operations performed on pairs of bytes (and injects the relevant one into the result.)

Flag columns. Among the instruction decoded columns on finds various binary flags columns (e.g.
♦ALU� , ♦MMU� , ♦EXP� , . . .). These serve several purposes. The first is to provide an indica-
tion as to when modules may be sollicited by the hub to carry out an instruction. Thus arithmetic
instructions raise the ♦ALU� , instructions that involve the RAM raise the ♦MMU� etc . . . Other
flags trigger particular behaviours. For instance the PUSH� and the JUMP� trigger the expected
behaviour of the program counter in the hub.

Module selector columns. When an instruction raises an instruction flag the associated module
may get triggered. The actual trigger is usually deduced form this flag and exception flags. Such
columns are tagged with a � symbol

Interleaved columns. Certain arguments require us to merge columns of the same size into a single
column. We use � to signify the formation of such interleaved columns. E.g. starting with columns
A, B and C of size n we may form the column X := A�B�C defined as having length 3n and values

X3·i+0 = Ai

X3·i+1 = Bi

X3·i+2 = Ci

Row permutations. Our arithmetization requires row permutation arguments. These usually take
the following form: we are given a small family of reference columns REF1, . . . ,REFp of equal size n
(which we view as the columns of a n× p reference matrix REF). We are further given the description
of an essentially unique permutation of the set {0, 1, . . . , n − 1} of rows indices, e.g. “(the essentially
unique) row permutation of the matrix REF under which its rows appear lexicographically sorted”. We
then write AUXj 7→ [AUXj]

� for the mapping which takes an arbitrary column of the same size and
applies the aforementioned row permutation to its rows.

0.4 Organization
1. ALU: ALU module; deals with opcodes performing arithmetic operations; see chapter ??;

2. BIN: binary module; deals with opcodes performing binary operations; see chapter ??;
1which are connected to the hub

7

3. WCP: word comparison module; deals with opcodes performing integer comparisons; see chap-
ter 9;

4. MXP: computes memory expansion costs; may raise a flag if offsets are wildly out of bounds; see
chapter 6;

5. GAS: module which performs gas checks at crucial points in time; performs the (63/64)-ths
computations for CALLs and CREATEs; computes associated gas endowments; see chapter ??gas;

6. ROM: contains the bytecodes which are run and or (temporarily) deployed in a batch of trans-
actions; see chapter 4;

7. HUB: module containing the stack and call stack; dispatches instructions to other modules; see
chapter 1;

8. MMU: first stop in the life time of an opcode execution which touches RAM; performs arithmetic
on offsets and various sizes to cut down execution of a single opcode into a sequence of smaller
queries; see chapter 2;

9. RAM: contains the RAM of all execution context and can communicate with other data sources
such as ROM and other data stores; carries out the sequence of small queries commissioned by
the MMU; see chapter 3;

10. OOB: performs certain range checks required by instructions; see chapter 5;

11. STO: storage module; unique among all modules other than the hub in that it computes its own
gas costs; see chapter 8;

12. ACC: address existence module; loads and udpates account data from the state; WIP;

13. WRM: address warmth module: loads prewarmed addresses; handles address warmth in general;
built on similar principles as the storage module; see chapter ??;

The following are a few very small modules that either perform a very specific task or are used for
reference for the prover

1. KEC: two simple modules: an INFO-module which extracts informations for whenever Keccak is
executed in the zk-evm (i.e. paid for executions of SHA3 and CREATE2) such as the size in bytes
of the data to hash2; the second module serves as a data store to which to extract the message
to hash;

2. LOG: same idea for logs; the information module extracts the log parameter (∈ {09, 1, 2, 3, 4}),
logger address and size in bytes; the second module serves as a data store for the log message;

3. EXP: computes the dynamic gas cost of the EXP instruction; see chapter ??;

4. SHV: shaves the leading 12 bytes off addresses; see chapter 13;

2The price, which depends on the number of EVM words rather than the number of bytes, is computed in the MXP

8

Figure 1: Modular architecture of the zk-evm. Boxes represent modules and arrows represent (plookup)
inclusion proofs. If an arrow points from module ABC to module XYZ then XYZ imports a portion of
its data from ABC. Arrows may be bidirectional which signals a “bilateral” inclusion proof.

9

0.5 Suggestions for reading this document
We suggest the reader start with the chapter on the hub 1. The hub is the center piece of our zk-
evm design. It reads instructions from the ROM 4 and dispatches instructions to other modules.
Various smaller modules which are directly connected to the hub (e.g. the word comparison module9
or out of bounds module 5) may prove helpful to develop some intuition for the techniques used
elsewhere. After the hub, the main module of interest is certainly the RAM. In our design the RAM
is split into 2 pieces: the memory management unit 2 (or offset processor) and the memory mapped
input output module??. The mmu receives instructions from the hub and is tasked with breaking
them down into smaller “elementary” operations. This reduction is a two phase process: the first
phase (“precomputation” or “establishing” phase) extracts auxiliary data from the arguments of the
opcode (offset and size parameters). The second “micro-instruction writing” phase uses these numerical
parameters to build a sequence of micro-instructions (surgeries and transplants) which the mmio
imports and carries out.

The reader should be warned: this document is a work in progress: typos — even outright mistakes
— are to be expected. One module (the address existence module) is presently missing from the
spec — it is a work in progress. Some sections have received more attention than others. The hub 1,
the memory-mapped-input-output module?? are among them as are various other “smaller” modules
such as the binary module, the word comparison module and others.

10

Chapter 1

Hub

1.1 Columns
1.1.1 Conventions
Throughout the document we use a number of notational conventions which we explain here. These
conventions apply to column names and are meant to clarify the origin and purpose of certain columns
within a given trace. Others should be viewed as constructors which define new columns from existing
ones.

Modules have three letter identifiers. The named modules are the following:

Module stamps. Module stamps count calls to a given module; most modules have a single stamp
though the hub and ALU have several. Stamp columns are adorned with a � , thus the STO � is
the module stamp of the storage module. Module stamps are typically computed/updated in the hub
module whose main purpose is to dispatch (paid for an otherwise valid) instructions to the module(s)
that are equipped to carry them out. Associating a unique identifier (i.e. stamp) to such “module-
calls” is crucial when the order of operations matters. This is the case for instructions pertaining to
(address) warmth (i.e. the WRM module), required gas computations (i.e. GAS), RAM (i.e. MMU
and RAM), the stack (i.e. HUB), storage (i.e. STO), . . . to cite a few. Stateless modules such as
the modules handling arithmetic (i.e. the ALU module), binary (i.e. BIN) or word comparison (i.e.
WCP) opcodes don’t require a time stamp per se yet are given one nonetheless. (e.g. the address
warmth module corresponds to the three letter identifier WRM); the corresponding stamp column is
that identifier followed by � (e.g. HUB �).

Imported columns. Angular parentheses 〈 · · · 〉 signal columns whose contents are imported from
other modules by means of a lookup argument. By way of example: all modules1 import their module
stamp from the hub. Modules tasked with executing certain opcodes will typically import values from
the stack (e.g. pairs of stack values 〈 kVAL hi〉, 〈 kVAL lo〉, for various k ∈ {1, 2, 3, 4}.) Many modules
also imports values that aren’t borrowed from the stack. E.g. the hub module imports the instruction
〈INST〉 from the ROM, e.g. the GAS module imports the current, new and endowment gas values
(GASκ, GASν and GASε respectively) from the hub, e.g. the OOB module imports execution context
dependent data such exception flags, the size of return data 〈RDS〉, the size of call data 〈CDS〉 or the
code size 〈CODESIZE〉.

Decoded columns. A particular case of the above arises with decoded columns. Those are
columns whose contents are extracted from a hardcoded collection of columns using a lookup argument.

1which are connected to the hub

11

They are adorned with a lozenge as in ♦COL. By way of example: the hub contains various instruction
decoded flag columns but also a ♦STACK_PATTERN column whose contents are deduced from an
immutable reference table called the instruction decoder. Similarly the binary module imports the
results of binary operations performed on pairs of bytes (and injects the relevant one into the result.)

Flag columns. Among the instruction decoded columns on finds various binary flags columns (e.g.
♦ALU� , ♦MMU� , ♦EXP� , . . .). These serve several purposes. The first is to provide an indica-
tion as to when modules may be sollicited by the hub to carry out an instruction. Thus arithmetic
instructions raise the ♦ALU� , instructions that involve the RAM raise the ♦MMU� etc . . . Other
flags trigger particular behaviours. For instance the PUSH� and the JUMP� trigger the expected
behaviour of the program counter in the hub.

Module selector columns. When an instruction raises an instruction flag the associated module
may get triggered. The actual trigger is usually deduced form this flag and exception flags. Such
columns are tagged with a � symbol

Interleaved columns. Certain arguments require us to merge columns of the same size into a single
column. We use � to signify the formation of such interleaved columns. E.g. starting with columns
A, B and C of size n we may form the column X := A�B�C defined as having length 3n and values

X3·i+0 = Ai

X3·i+1 = Bi

X3·i+2 = Ci

Row permutations. Our arithmetization requires row permutation arguments. These usually take
the following form: we are given a small family of reference columns REF1, . . . ,REFp of equal size n
(which we view as the columns of a n× p reference matrix REF). We are further given the description
of an essentially unique permutation of the set {0, 1, . . . , n − 1} of rows indices, e.g. “(the essentially
unique) row permutation of the matrix REF under which its rows appear lexicographically sorted”. We
then write AUXj 7→ [AUXj]

� for the mapping which takes an arbitrary column of the same size and
applies the aforementioned row permutation to its rows.

1.1.2 Column descriptions
1. INSTRUCTION_STAMP: instruction stamp column; abbreviated to INST�; the first instruction

takes place at INST� = 1; increases by 1 with every instruction;

2. STACK_STAMP: stack stamp column; abbreviated to abbreviated to STACK�; the first operation
touching the batch’s first transaction’s root context’s stack has �STACK = 1; increases by one
every time the stack is popped, peeked at or an item is pushed onto the stack;

How many stack items an instruction touches depends on the instruction itself; consecutive values
of �STACK may jump by any value in the range {0, 1, 2, 3, 4, 5, 6, 7, 8}; the precise amount by which it
jumps is decided by the stack pattern which the instruction follows.

3. HEIGHT: contains the current height of the current execution context’s stack; the height is in
the range {0, 1, . . . , 1024} with HEIGHT = 0 signifiying an empty stack;

4. HEIGHTν : contains the height of the current execution context’s stack after dealing with the
current instruction;

5. 〈INST〉: instruction loaded from the ROM;

12

6. 〈INSTRUCTION_ARGUMENT〉 hi, 〈INSTRUCTION_ARGUMENT〉 lo: instruction argument (for PUSH_X
instructions) loaded from the ROM; abbreviated to 〈ARG〉 hi and 〈ARG〉 lo respectively;

7. STATG: instruction decoded static gas cost of instruction;

8. ♦INST_PARAMETER: instruction parameter obtained from instruction decoding 〈INST〉; abbre-
viated to ♦PARAM;

9. ♦TWO_LINE_INSTRUCTION: instruction decoded binary flag indicating whether an instruction
requires one or two rows in the execution trace; abbreviated to ♦TLI;

10. COUNTER: binary counter column; abbreviated to CT;

For one line instructions (i.e. ♦TLIi = 0) we have CTi = 0; for two line instructions (i.e. ♦TLIi = 1)
counter will count from 0 to 1 (i.e. CTi = 0 and CTi+1 = 0 if we enter the instruction at row i).

11. ♦STACK_PATTERN: instruction decoded “stack pattern” column; defines the pattern according
to which stack values are touched or left empty; abbreviated to ♦PAT

12. ♦FLAG1,
♦FLAG2,

♦FLAG3: three isntruction decoded binary flag columns;

For instance the ♦PARAM associated with DUPX, X ∈ {1, 2, . . . , 16}, is X − 1 while the ♦PARAM as-
sociated with SWAPX, X ∈ {1, 2, . . . , 16}, is X. In our model, a stack item is fully determined by 6
parameters: the context number CONTEXT_NUMBER (i.e. CN) and 5 other parameters which we
describe below, though the stack items of a given row all share the same CN. We say that a stack item
was touched by an instruction if it was either peeked at, popped or pushed onto stack. Every
row of the present module touches up to 4 stack items. An instruction whose (instruction decoded)
♦TWO_LINE_INSTRUCTION flag equals 0 can touch, in one way or another, up to 4 stack items;
instructions whose (instruction decoded) ♦TWO_LINE_INSTRUCTION flag equals 1 can touch, in one
way or another, up to 8 stack items spread over 2 consecutive rows of the execution trace. Among the
instructions raising the ♦TWO_LINE_INSTRUCTION one finds all variations on CALL, the LOG0-LOG4
instructions but also CREATE and CREATE2. The former is nonnegotiable as these instructions pop 6 or
7 items from stack and push a “success bit” onto it (which amounts to 7 or 8 touched stack items).
The LOG0, LOG1, LOG2 instuctions touch (pop) 2, 3 and 4 stack items respectively while LOG3, LOG4
touch (pop) 5 and 6 stack items respectively. The CREATE and CREATE2 instructions touch 4 and 5
stack items respectively. For simpler constraints we have chosen a uniform approach to all logs where
the first row of the intruction touches (pops) the offset and size parameters and the next row touches
(pops) the topics (if any). Similarly, the two creation instructions are dealt with uniformly.

The next 20 (!) columns contain information about the stack items an instruction touches. These
20 columns are comprised of 4 batches (parametrized by k = 1, 2, 3, 4) of 5 columns.

13. kHEIGHT: column containing the height ∈ {1, . . . , 1024}2 of the k-th touched stack item;

14. kVAL hi: column containing the

15. kVAL lo: column containing the

16. kPOP: binary column; kPOP = 1 indicates that the item at height kHEIGHT was popped;
kPOP = 0 indicates that the item at height kHEIGHT was peeked at or pushed;

17. �
kSTACK: stack stamp;

The stack stamp columns will be used in the stack consistency constraints to impose a total order on
the accesses to a given stack height of a given execution context. The pop flag will oscilate like so: 0
(i.e. push), 1 (i.e. pop), 0, 1,

2Note the range difference between the kHEIGHT columns and the HEIGHT column.

13

18. STACK_EXCEPTION: binary column; lights up precisely when an instruction raises a stack
exception; depending on the instruction this is either a stack overflow or a stack underflow (or
both in the case of DUP_X instructions); abbreviated to STX;

19. STACK_UNDERFLOW_EXCEPTION: binary column; lights up precisely when an executing the
current instruction would produce a stack underflow exception; abbreviated to SUX;

20. STACK_OVERFLOW_EXCEPTION: binary column; lights up precisely when an executing the
current instruction would produce a stack overflow exception; abbreviated to SOX;

21. HEIGHT_UNDER: used purely for detecting stack underflows; takes values in the range {0, 1, . . . , 1024};
abbreviated to HU;

22. HEIGHT_OVER: used purely for detecting stack overflows; takes values in the range {0, 1, . . . , 1024};
abbreviated to HO;

1.2 Stack
1.2.1 Heartbeat
This section describes the hearbeat of the stack module. It is imposed by two factors: the in-
struction decoded binary column ♦TWO_LINE_INSTRUCTION and the INSTRUCTION_STAMP. The
COUNTER column either stagnates at 0 if ♦TLIi = 0 or counts from 0 to 1 if ♦TLIi = 1. There are one
or more padding rows at the beginning.

1. INST�0 = 0;

2. INST� is nondecreasing in the following sense: ∀i, INST�i+1 ∈ {INST�i, 1 + INST�i};

3. if INST�i = 0 then ♦TLIi = 0;

4. if ♦TLIi = 0 then
(

CTi+1 = 0 and CTi = 0
)
;

5. if INST�i 6= 0 then if ♦TLIi = 1:

(a) if CTi 6= 1 then  INST�i+1 = INST�i

〈INST〉i+1 = 〈INST〉i
CTi+1 = 1 + CTi

Note that in that case ♦TLIi+1 = ♦TLIi as well. Actually
♦DECODED_COLUMNi+1 = ♦DECODED_COLUMNi

for any instruction decoded column.

(b) if CTi = 1 then
(

CTi+1 = 0 and INST�i+1 = 1 + INST�i

)
.

1.2.2 Counter constancy
We say that a column X is counter-constant if it satisfies

CTi 6= 0 =⇒ Xi = Xi−1

Note 〈INST〉 is counter-constant by construction, see section 7.3.1. It follows that all instruction
decoded flags are counter-constant. The following columns are counter-constant:

14

1. HEIGHT 2. HEIGHTν 3. HU 4. HO

1.2.3 Height range
We ask that the HEIGHT column satisfy the bound

∀i,


HEIGHTi

HEIGHTν
i

HUi

HOi

 ∈ {0, 1, . . . , 1024}.
We test this by means of a Cairo-style small-range range-proof. Note that our arithmetization requires
no further range check on the kHEIGHT, k = 1, 2, 3, 4, columns. The above constraint is sufficient to
enforce that:

• if the k-th stack item is nonempty then kHEIGHT ∈ {1, . . . , 1024};

• if the k-th stack item is mostly empty or empty then kHEIGHT = 0.

1.2.4 Zero padding
Beyond the heartbeat constraints and range constraints that take effect with the first row of the
execution trace, all constraints detailed below apply under the assumption that

INST�i 6= 0

In our implementation the execution trace of this module, like that of any other module, is padded
with at least one row of zeros so that its length may hit a power of 2. In our implementation we include
the following extra constraint for every column X of the module

if INST�i = 0 then Xi = 0

1.2.5 Stack exceptions
Before the stack excavates any items it must first check whether doing so would cause an exception,
i.e. a stack overflow or a stack underflow. The present section takes care of this check. It uses the
HEIGHT column and instruction decoded evm parameters (δw, αw) which occupy the ♦DELTA and
♦ALPHA columns respectively. and

1. We first check for stack underflows:

HUi =
(
2 · SUXi − 1

)
·
(♦DELTAi − HEIGHTi

)
− SUXi

2. if SUXi = 1 then SOXi = 0 (i.e. if a stack underflow occurred we set the overflow flag to 0.)

3. if SUXi = 0 then we check for overflows:

HOi =
(
2 · SOXi − 1

)
· (HUi +

♦ALPHAi − 1024)− SOXi

Note that SUXi = 0 implies HUi = HEIGHTi − ♦DELTAi.

4. STXi = SUXi + SOXi.

By construction one cannot have both a stack overflow and an underflow at the same time. The
preceding thus computes the binary flag SUXi ∨ SOXi = SUXi + SOXi − SUXi · SOXi = SUXi + SOXi.

15

1.2.6 Call stack depth exception
We provide the constraints for the CSDX flag.

1. CSDX is binary3

2. we impose a range constraint

CSDi +
♦CALL� i +

♦CREATE� i − 1025 · CSDXi ∈ {0, 1, . . . , 1024}.

1.3 Stack patterns
1.3.1 Purpose
The present section explores stack patterns and sheds some light as to which instructions use what
stack patterns. What we call a stack pattern is the pattern according to which the stack items
touched by an individual instruction are laid out across the 4 to 8 stack items which are available to
the instruction. Full details are given in section 1.4 on “one line stack patterns” and section 1.5 on
“two line stack patterns”.

The Ethereum Yellow Paper defines for every instruction w a pair of nonnegative integers (δw, αw)
where δw is the number of stack items w pops off the stack and αw is the number of stack items
w pushes onto the stack4. Similarly, every instruction has a corresponding zk-evm specific pair of
nonnegative integers (δzk

w , αzk
w) which, to some extent, determine the instruction’s stack pattern. The

pairs (δw, αw) and (δzk
w , αzk

w) don’t necessarily coincide (though they mostly do.) For instance, the
following inequalities always hold:

δzk
w ∈ {0, 1, . . . , 7}, αzk

w ∈ {0, 1, 2} and δzk
w + αzk

w ∈ {0, 1, . . . , 8}

The most notable divergence between these parameter families comes from DUP_X and SWAP_X instruc-
tions, X ∈ {1, . . . , 16}. The Ethereum Yellow Paper ascribes them, respectively, the pairs (δDUP_X, αDUP_X) =
(X, X + 1) and (δSWAP_X, αSWAP_X) = (X + 1, X + 1). The stack pattern our arithmetization uses bears no
dependence on X, as implicitly the zk-evm has:

(δzk
DUP_X, α

zk
DUP_X) = (1, 2) and (δzk

SWAP_X, α
zk
SWAP_X) = (2, 2).

In other words the zk-evm views DUP_X instructions (that don’t raise a stack underflow or overflow
exception) as the popping of one stack item (at height HEIGHTi − (X− 1)) and two pushes (at height
HEIGHTi − (X− 1) and HEIGHTi + 1 respectively)5. Similarly, the zk-evm views SWAP_X instructions
(that don’t raise a stack underflow exception) as the popping of two stack items (at height HEIGHTi−X
and HEIGHTi) and two pushes (at height HEIGHTi − X and HEIGHTi respectively)6. Note that the
parameter to substract from the current height7 is read off the instruction decoded column ♦PARAM.

The inequality 0 ≤ δzk
w +αzk

w ≤ 8 and our choice to excavate up to 4 stack items per row of the exe-
cution trace allow our stack to deal with every instruction in one or two rows. The instruction decoded
binary column ♦TWO_LINE_INSTRUCTION records precisely this hardcoded distinction. Most of the
time instructions w with δzk

w + αzk
w ≤ 4 have ♦TLI = 0 though there are exceptions: CREATE and the

three log instructions LOG0, LOG1 and LOG2 are counter-examples to this. We have chosen to deal with,
on the one hand, CREATE and CREATE2, and on the other hand, the LOGX instructions, X ∈ {0, . . . , 4},
in unified ways.

3and counter-constant by construction
4More precisely: δw ∈ {0, 1, . . . , 7,8, . . . ,17} is the number of stack items w pops off of the current execution context’s

stack given that doing so doesn’t raise a stack underflow exception, and αw ∈ {0, 1, 2,3, . . . ,17} is the number of stack
items w pushes onto the current execution context’s stack given that doing so doesn’t raise a stack overflow exception.

5The value that was popped is pushed at both heights.
6The popped values are interchanged in the pushes.
7X − 1 for DUP_X, X for SWAP_X

16

If ♦TLI = 0 and δzk + αzk < 4 fewer than 4 stack items are touched. Similarly, if ♦TLI = 1 and
δzk +αzk < 8) fewer than 8 stack items are touched. In either case we need to also impose constraints
on the “phantom stack items”. The consistency checks described in section 1.3.3 ignore such rows.

A slight complication arises from the CODECOPY instruction. This is an instruction with (δzk
w , αzk

w) :=
(δw, αw) = (3, 0) and ♦TLI = 0. The stack pattern of this instruction is what one would expect from
an instruction following the copyPattern. Except that its fourth stack item is only mostly empty.
We exploit the absence of constraints that caracterizes stack items of any execution environment at
HEIGHT = 0 (as well as any height of the 0th execution environment.) This allows us to introduce the
current context’s BC_ADDR into the 4VAL hi/ 4VAL lo fields without disturbance to stack consistency.
The RETURN instruction, which is a (δzk

w , αzk
w) := (δw, αw) = (2, 0) and ♦TLI = 0 instruction, comes with

a similar complication. If the current execution context isn’t a deployment context (i.e. CTYPE = 0)
then its fourth stack item is empty. If the current execution context is a deployment context (i.e.
CTYPE = 1) its fourth stack item is mostly empty. As before we plug the current context’s BC_ADDR
into the 4VAL hi/ 4VAL lo fields and keep all other fields of the fourth stack item empty (i.e. = 0.) Again,
this is without consequence for stack consistency constraints.

Here is an example: say the instruction pops δzk = 2 items and adds αzk = 1 items and ♦TLI = 0
(i.e. it’s a “one line instruction”.) This stack pattern applies to most arithmetic operations, most word
comparison operations and most binary operations which have two inputs and one output. Note that
♦TLI = 0 and δzk + αzk = 3 < 4 so there is one “phantom stack item” (the third one). The associated
stack pattern will impose values to all 4 stack items that the present line “excavates” like in figure ??

〈INST〉 ♦TLIi HEIGHT HEIGHTν STACK� STACK�ν
1ITEM 2ITEM 3ITEM 4ITEM

BLA 0 h h− 1 st st + 3 · · · · · · ∅ · · ·

1ITEM

1HEIGHT 1VAL hi
1VAL lo

1POP �
1STACK

h− 0 v hi
1 v lo

1 1 st + 1

2ITEM

2HEIGHT 2VAL hi
2VAL lo

2POP �
2STACK

h− 1 v hi
2 v lo

2 1 st + 2

3ITEM

3HEIGHT 3VAL hi
3VAL lo

3POP �
3STACK

∅ ∅ ∅ ∅ ∅

4ITEM

4HEIGHT 4VAL hi
4VAL lo

4POP �
4STACK

h− 1 v hi
4 v lo

4 0 st + 3

Figure 1.1: The values in this font represent hardcoded values associated with this particular stack
pattern. The values in this font are also hardcoded values but we reserve this font for empty stack
items. Note that we consistently write ∅ to mean 0 when a field of a particular stack item is zero
because the stack item is empty, see section 1.3.3.

1.3.2 Expected outcome
Designing stack patterns is straightforward for instructions pertaining to the binary module, the word
comparison module, the arithmetic module and the storage module: the relevant instructions are
relatively uniform in the number of arguments they retrieve from stack. There is more diversity for
instructions touching the RAM and the call stack. Of the instructions directly touching RAM (or
transaction call data) we want to achieve the following data pattern for instructions with ♦TLI = 0:
While for instructions touching RAM that require two lines (i.e. ♦TLI = 1): We also list the expected
stack patterns for instructions that induce changes in the call stack:

17

INST Item 1 Item 2 Item 3 Item 4
CALLDATALOAD offset ∅ ∅ loaded
MLOAD offset ∅ ∅ loaded
MSTORE offset ∅ ∅ toStore
MSTORE8 offset ∅ ∅ toStore
SLOAD storage key ∅ ∅ loaded
SSTORE storage key ∅ ∅ toStore
CALLDATACOPY offset (rel.) srcOffset size ∅
CODECOPY offset srcOffset size (address)
EXTCODECOPY offset srcOffset size address
RETURNDATACOPY offset (rel.) srcOffset size ∅
SHA3 offset ∅ size hash
RETURN offset ∅ size (address)
REVERT offset ∅ size ∅

Figure 1.2: Expected stack patterns for 1 line instructions touching the RAM module. We have already
alluded to the special case of CODECOPY and its mostly empty fourth stack item. The property of being
mostly empty (i.e. only containing address := BYTECODE_ADDRESS) is signaled by parentheses.
We also signaled the same mostly empty fourth stack item issue with RETURN instructions ran in a
deployment context. The interpretation of address := BYTECODE_ADDRESS is analoguous in this
case, but now depends on the binary flag CTYPE.

INST Item 1 Item 2 Item 3 Item 4 CT
LOG0 offset ∅ size ∅ 0

∅ ∅ ∅ ∅ 1
LOG1 offset ∅ size ∅ 0

topic1 ∅ ∅ ∅ 1
LOG2 offset ∅ size ∅ 0

topic1 topic2 ∅ ∅ 1
LOG3 offset ∅ size ∅ 0

topic1 topic2 topic3 ∅ 1
LOG4 offset ∅ size ∅ 0

topic1 topic2 topic3 topic4 1

CREATE offset ∅ size address (or 0) 0
∅ ∅ value ∅ 1

CREATE2 offset salt size address (or 0) 0
∅ ∅ value ∅ 1

Figure 1.3: Expected stack pattern for instructions with ♦TWO_LINE_INSTRUCTION = 1 touching
the RAM module.

18

INST Item 1 Item 2 Item 3 Item 4 CT
CALL offset R@O size R@C 0

gas address value success 1
CALLCODE offset R@O size R@C 0

gas address value success 1
DELEGATECALL offset R@O size R@C 0

gas address ∅ success 1
STATICCALL offset R@O size R@C 0

gas address ∅ success 1

Figure 1.4: Expected stack pattern for instructions with ♦TWO_LINE_INSTRUCTION = 1 that don’t
touch the RAM module.

1.3.3 Empty stack item
Let k ∈ {1, 2, 3, 4}. We define the following ”empty k-th stack item” constraint system:

kEmptyStackItem ⇐⇒


kHEIGHTi = 0

kPOPi = 0

kVAL hi
i = 0

kVAL lo
i = 0

�
kSTACKi = 0

1.3.4 Stack exception pattern
We lay out the constraints and stack pattern associated to stack exceptions.

1. if STXi = 1 then

Stack Item n◦ 1: The first stack item is empty: 1EmptyStackItem

Stack Item n◦ 2: The second item is empty: 2EmptyStackItem;
Stack Item n◦ 3: The third item is empty: 3EmptyStackItem;
Stack Item n◦ 4: The fourth stack item is empty: 4EmptyStackItem;
Stack stamp update: STACK�ν

i = STACK�i;
Height update: HEIGHTν

i = 0;

1.4 One line instruction stack patterns
1.4.1 Disclaimer

The stack patterns presented in the current section 1.4 apply if and only if STXi = 0.

1.4.2 (0,0)-pattern
Supported instructions. The 0_0_Pattern corresponds to evm instructions w with (δzk

w , αzk
w) :=

(δw, αw) = (0, 0), i.e.

19

1. STOP;

2. INVALID;

3. JUMPDEST;

4. any byte that isn’t an opcode.

Relevant instruction decoded columns. Among all instruction decoded columns we focus on the
following flags:

INST ♦PAT ♦TLI
(0,0)-instructions 0_0_Pattern 0

Constraints. We collect under the 0_0_Pattern moniker the following collection of constraints:

Stack Item n◦ 1: The first stack item is empty: 1EmptyStackItem;

Stack Item n◦ 2: The second stack item is empty: 2EmptyStackItem;

Stack Item n◦ 3: The third stack item is empty: 3EmptyStackItem;

Stack Item n◦ 4: The fourth stack item is empty: 4EmptyStackItem; 2EmptyStackItem, 3EmptyStackItem
and 4EmptyStackItem,

Stack stamp update: STACK�ν
i = STACK�i,

Height update: HEIGHTν
i = HEIGHTi,

1.4.3 (0,1) and (1,0) patterns
Supported instructions. The instructions listed below are precisely the instructions with ♦PAT =
oneItemPattern. The oneItemPattern corresponds to evm instructions w with (δw, αw) ∈ {(1, 0), (0, 1)},
i.e. (1, 0)-instructions. For such instructions (δzk

w , αzk
w) := (δw, αw) and ♦TLI = 0. The (1, 0)-

instructions are:

1. POP 2. JUMP 3. SELFDESTRUCT

and (0, 1)-instructions:

1. ADDRESS

2. ORIGIN

3. CALLER

4. CALLVALUE

5. CALLDATASIZE

6. CODESIZE

7. GASPRICE

8. RETURNDATASIZE

9. COINBASE

10. TIMESTAMP

11. NUMBER

12. DIFFICULTY

13. GASLIMIT

14. CHAINID

15. SELFBALANCE

16. BASEFEE

17. PC

18. MSIZE

19. GAS

20. PUSH1-PUSH32

Relevant instruction decoded columns. Among all instruction decoded columns we focus on the
following flags:

INST ♦PAT ♦TLI ♦FLAG1

(0,1)-instructions oneItemPattern 0 0
(1,0)-instructions oneItemPattern 0 1

Graphical representation. We figures below represent the oneItemPattern stack pattern:

20

Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi ∅ ∅ ∅ h + 1

kVAL hi/ kVAL lo ∅ ∅ ∅ res
kPOPi ∅ ∅ ∅ 0
�
kSTACKi ∅ ∅ ∅ st + 1

Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi h ∅ ∅ ∅
kVAL hi/ kVAL lo top ∅ ∅ ∅
kPOPi 1 ∅ ∅ ∅
�
kSTACKi st + 1 ∅ ∅ ∅

Figure 1.5: The left hand side represents the stack patttern for (0, 1)-instructions (i.e. ♦FLAG1 = 0),
the right hand side represents the stack patttern for (1, 0)-instructions (i.e. ♦FLAG1 = 1) We write
h = HEIGHTi and STACK�i = st.

Constraints. We collect under the oneItemPattern moniker the following collection of constraints.
They apply whenever

STXi = 0

Stack Item n◦ 1: The first stack item is contains a stack item iff ♦FLAG1 = 1:
1HEIGHTi = HEIGHTi ·

♦FLAG1,

1POPi =
♦FLAG1,

�
1STACKi = (STACK�i + 1) · ♦FLAG1.

Stack Item n◦ 2: The second item is empty: 2EmptyStackItem;

Stack Item n◦ 3: The third item is empty: 3EmptyStackItem;

Stack Item n◦ 4: The fourth stack item is contains a stack item iff ♦FLAG1 = 0:
4HEIGHTi = (HEIGHTi + 1) · (1− ♦FLAG1),

4POPi = 0,
�
4STACKi = (STACK�i + 1) · (1− ♦FLAG1).

Stack stamp update: STACK�ν
i = STACK�i + 1;

Height update: HEIGHTν
i = HEIGHTi + (1− 2 · ♦FLAG1);

1.4.4 (1,1) and (2,0) patterns
Supported instructions. The stack pattern described below applies to the following instructions
(1, 1)-instructions:

• ISZERO

• NOT

• BALANCE

• EXTCODESIZE

• EXTCODEHASH

• BLOCKHASH

• CALLDATALOAD

• MLOAD

• SLOAD

21

and to the following (2, 0)-instructions:

• MSTORE

• MSTORE8

• SSTORE

• JUMPI

Relevant instruction decoded columns. Among all instruction decoded columns we focus on the
following:

INST ♦PAT ♦TLI ♦FLAG1

(1,1) instructions twoItemPattern 0 0
(2,0) instructions twoItemPattern 0 1

Graphical representation. The picture is the following, for instance for MLOAD (♦FLAG1 = 0) and
MSTORE (♦FLAG1 = 1)

Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi h ∅ ∅ h
kVAL hi/ kVAL lo ARG1 ∅ ∅ OUT
kPOPi 1 ∅ ∅ 0
�
kSTACKi st + 1 ∅ ∅ st + 2

Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi h ∅ ∅ h− 1

kVAL hi/ kVAL lo ARG1 ∅ ∅ ARG2
kPOPi 1 ∅ ∅ 1
�
kSTACKi st + 1 ∅ ∅ st + 2

Figure 1.6: On the left hand side is the picture for a (1, 1) instruction (i.e. ♦FLAG1 = 0). On the
right hand side is the picture for a (2, 0) instruction (i.e. ♦FLAG1 = 1). We write h = HEIGHTi and
STACK�i = st.

Constraints. We collect under the twoItemPattern moniker the following collection of constraints:

Stack Item n◦ 1: depending on the instruction contains either a relative offset, an absolute
offset or a storage key:  1HEIGHTi = HEIGHTi,

1POPi = 1,
�
1STACKi = STACK�i + 1.

Stack Item n◦ 2: is empty: 2EmptyStackItem;

Stack Item n◦ 3: is empty: 3EmptyStackItem;

Stack Item n◦ 4: depending on the instruction, contains the value being loaded or being stored:
4HEIGHTi = HEIGHTi −

♦FLAG1

4POPi =
♦FLAG1

�
4STACKi = STACK�i + 2.

Stack stamp update: STACK�ν
i = STACK�i + 2,

Height update: HEIGHTν
i = HEIGHTi − 2 · ♦FLAG1,

For this set of instructions the interpretation of ♦FLAG1 is that it equals 1 for storing instructions and
0 for loading instructions.

22

1.4.5 (2,1) and (3,1) patterns
Supported instructions. The stack pattern described below applies to the following (δzk

w , αzk
w) =

(δw, αw) = (2, 1) instructions:

• ADD

• MUL

• SUB

• DIV

• SDIV

• MOD

• SMOD

• EXP

• SIGNEXTEND

• LT

• GT

• SLT

• SGT

• EQ

• AND

• OR

• XOR

• BYTE

• SHL

• SHR

• SAR

• SHA3

aswell as to the following (δzk
w , αzk

w) = (δw, αw) = (3, 1) instructions:

• ADDMOD • MULMOD

Note that we don’t include CREATE (which would have the correct signature … maybe we should ?)
The purpose of the ♦FLAG1 is to differentiate between those instructions with 2 inputs (♦FLAG1 = 0)
and those instructions with 3 inputs (♦FLAG1 = 1.)

Graphical representation. The picture is the following:

Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi h ∅ h− 1 h− 1

kVAL hi/ kVAL lo ARG1 ∅ ARG2 OUT
kPOPi 1 ∅ 1 0
�
kSTACKi st + 1 ∅ st + 2 st + 3

Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi h h− 2 h− 1 h− 2

kVAL hi/ kVAL lo ARG1 ARG3 ARG2 OUT
kPOPi 1 1 1 0
�
kSTACKi st + 1 st + 2 st + 3 st + 4

Figure 1.7: Representation of the standardPattern for ♦FLAG1 = 0 (left) and ♦FLAG1 = 1 (right.) On
the left hand side standard instructions with 2 arguments, on the right hand side standard instructions
with 3 arguments. We chose to put the second instruction argument in the third stack item because
of the SHA3 instruction that, following expectations, expects to find its size parameter in the 3rd stack
item. We write h = HEIGHTi and STACK�i = st.

Constraints. We collect under the 2_1_Pattern moniker the following collection of constraints:

Stack Item n◦ 1: contains the first instruction argument: 1HEIGHTi = HEIGHTi,

1POPi = 1,
�
1STACKi = STACK�i + 1.

Stack Item n◦ 2: contains the second instruction argument:
2HEIGHTi = (HEIGHTi − 2) · ♦FLAG1

i,

2POPi =
♦FLAG1

i,
�
2STACKi = (STACK�i + 2) · ♦FLAG1

i

23

Stack Item n◦ 3:  3HEIGHTi = HEIGHTi − 1,

3POPi = 1,
�
3STACKi = STACK�i + 2 +

♦FLAG1
i.

Stack Item n◦ 4: contains the output of the instruction
4HEIGHTi = HEIGHTi − 1− ♦FLAG1

i,

4POPi = 0,
�
4STACKi = STACK�i + 3 +

♦FLAG1.

Stack stamp update: STACK�ν
i = STACK�i + 3 +

♦FLAG2
i;

Height update: HEIGHTν
i = HEIGHTi − 1− ♦FLAG1

i;

1.4.6 DUP_X-pattern
Supported instructions. The dupPattern is used by DUP_X, X ∈ {1, 2, . . . , 16}, instructions.

Relevant instruction decoded columns. Among all instruction decoded columns we only require
the ♦INST_PARAMETER column:

INST ♦PAT ♦TLI ♦PARAM
DUP_X dupPattern 0 X− 1

Graphical representation. The figure below represents the dupPattern stack pattern:

Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi h− ♦PARAM ∅ h− ♦PARAM h + 1

kVAL hi/ kVAL lo v ∅ v v

kPOPi 1 ∅ 0 0
�
kSTACKi st + 1 ∅ st + 2 st + 3

Figure 1.8: The stack pattern for DUP_X instructions. We write h = HEIGHTi and st = STACK�i.

Constraints. We collect under the dupPattern moniker the following collection of constraints:

1. First stack item:  1HEIGHTi = HEIGHTi − ♦PARAMi,

1POPi = 1,
�
1STACKi = STACK�i + 1.

2. Second stack item: 2EmptyStackItem.

3. Third stack item: 
3HEIGHTi = HEIGHTi − ♦PARAMi,

3POPi = 0,

3VAL hi
i = 1VAL hi

i

3VAL lo
i = 1VAL lo

i
�
3STACKi = STACK�i + 2.

24

4. Fourth stack item: 
4HEIGHTi = HEIGHTi + 1,

4POPi = 0,

4VAL hi
i = 1VAL hi

i

4VAL lo
i = 1VAL lo

i
�
4STACKi = STACK�i + 3.

5. STACK�ν
i = STACK�i + 3,

6. HEIGHTν
i = HEIGHTi + 1,

1.4.7 SWAP_X-pattern
Supported instructions. The swapPattern is used by SWAP_X, X ∈ {1, 2, . . . , 16}, instructions.

Relevant instruction decoded columns. Among all instruction decoded columns we only require
the ♦INST_PARAMETER column:

INST ♦PAT ♦TLI ♦PARAM
SWAP_X swapPattern 0 X

Graphical representation. The figure below represents the swapPattern stack pattern:

Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi h− ♦PARAM h h− ♦PARAM h
kVAL hi/ kVAL lo v v′ v′ v

kPOPi 1 1 0 0
�
kSTACKi st + 1 st + 2 st + 3 st + 4

Figure 1.9: The stack pattern for DUP_X instructions. We write h = HEIGHTi and st = STACK�i.

Constraints. We collect under the swapPattern moniker the following collection of constraints:

1. First stack item:  1HEIGHTi = HEIGHTi − ♦PARAMi,

1POPi = 1,
�
1STACKi = STACK�i + 1.

2. Second stack item:  2HEIGHTi = HEIGHTi,

2POPi = 1,
�
2STACKi = STACK�i + 2.

3. Third stack item: 
3HEIGHTi = HEIGHTi − ♦PARAMi,

3POPi = 0,

3VAL hi
i = 2VAL hi

i

3VAL lo
i = 2VAL lo

i
�
3STACKi = STACK�i + 3.

25

4. Fourth stack item: 
4HEIGHTi = HEIGHTi

4POPi = 0,

4VAL hi
i = 1VAL hi

i

4VAL lo
i = 1VAL lo

i
�
4STACKi = STACK�i + 4.

5. STACK�ν
i = STACK�i + 4,

6. HEIGHTν
i = HEIGHTi,

1.4.8 RETURN/REVERT pattern
Supported instructions. The following stack pattern applies to

• RETURN

• REVERT

Relevant instruction decoded columns.

INST ♦PAT ♦TLI ♦FLAG1 CTYPE
RETURN returnReversePattern 0 1 0
RETURN returnReversePattern 0 1 1
REVERT returnReversePattern 0 0 0/1

Graphical representation. The picture is the following

Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi h ∅ h− 1 ∅
kVAL hi/ kVAL lo offset ∅ size (BC_ADDR)
kPOPi 1 ∅ 1 ∅
�
kSTACKi st + 1 ∅ st + 2 ∅

Figure 1.10: The first stack item contains an offset in the current execution context’s RAM. The
second stack item is empty. The third stack item contains the size of the return data. The fourth stack
item is mostly empty. It contains the current BYTECODE_ADDRESS in case of a RETURN instruction
happening in a deployment context. Otherwise it is ∅. We write h = HEIGHTi and STACK�i = st.

Constraints. We collect under the returnReversePattern moniker the following collection of con-
straints:

Stack Item n◦ 1: 
HEIGHTi = HEIGHTi,
POPi = 1,
�STACKi = STACK�i + 1.

Stack Item n◦ 2: is left empty 2EmptyStackItemi;

26

Stack Item n◦ 3: 
HEIGHTi = HEIGHTi − 1,
POPi = 1,
�STACKi = STACK�i + 2.

Stack Item n◦ 4: 

4HEIGHTi = ∅,

4VAL hi
i = BC_ADDR hi

i ·
♦FLAG1

i · CTYPEi,

4VAL lo
i = BC_ADDR lo

i ·
♦FLAG1

i · CTYPEi,

4POPi = ∅,
�
4STACKi = ∅

;

Stack stamp update: STACK�ν
i = STACK�i + 2;

Height update: HEIGHTν
i = HEIGHTi − 2;

1.4.9 Copy pattern
Supported instructions. The following stack pattern applies to

• CODECOPY

• EXTCODECOPY

• CALLDATACOPY

• RETURNDATACOPY

Relevant instruction decoded columns. The following instruction decoded flags are used to fill
the stack pattern correctly for every instruction.

INST ♦PAT ♦TLI ♦FLAG1 ♦FLAG2

CODECOPY copyPattern 0 1 0
EXTCODECOPY copyPattern 0 1 1
CALLDATACOPY copyPattern 0 0 0
RETURNDATACOPY copyPattern 0 0 1

For CALLDATACOPY and RETURNDATACOPY (i.e. ♦FLAG1 = 0) the fourth column is empty. For CODECOPY
(i.e. ♦FLAG1 = 1, ♦FLAG2 = 0) the fourth stack item is mostly empty but we stick the current code
address into the value field. For EXTCODECOPY (i.e. ♦FLAG1 = 1, ♦FLAG2 = 1) the fourth stack item is
populated.

Graphical representation. For this set of instructions the interpretation of ♦FLAG1 is that it equals
1 for EXTCODECOPY only. The picture is the following:

Constraints. We collect under the copyPattern moniker the following collection of constraints:

Stack Item n◦ 1: contains the destination offset: 1HEIGHTi = HEIGHTi −
♦FLAG1

i ·
♦FLAG2

i,

1POPi = 1,
�
1STACKi = STACK�i + 1.

27

Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi h h− 1 h− 2 ∅
kVAL hi/ kVAL lo destOffset (rel)offset size ∅
kPOPi 1 1 1 ∅
�
kSTACKi st + 1 st + 2 st + 3 ∅

(CALLDATACOPY and
RETURNDATACOPY)

Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi h h− 1 h− 2 ∅
kVAL hi/ kVAL lo destOffset (rel)offset size BC_ADDR
kPOPi 1 1 1 ∅
�
kSTACKi st + 1 st + 2 st + 3 ∅

(CODECOPY)

Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi h− 1 h− 2 h− 3 h
kVAL hi/ kVAL lo destOffset (rel)offset size ADDR
kPOPi 1 1 1 1
�
kSTACKi st + 1 st + 2 st + 3 st + 4

(EXTCODECOPY)

Figure 1.11: The first three items one pops from stack represent the offset where to start writing, the
(relative) offset of where to start reading and the size (i.e. number of bytes to read.) This is all there
is when ♦FLAG1 = 0. But for EXTCODECOPY (i.e. ♦FLAG1 =

♦FLAG2 = 1) there is an extra stack
argument to pop: the address. For CODECOPY (i.e. ♦FLAG1 = 1 and ♦FLAG2 = 0) the fourth stack
item is technically empty but we make it contain the current bytecode address. This will not perturb
consistency constraints as HEIGHT = 0. We write h = HEIGHTi and STACK�i = st.

Stack Item n◦ 2: contains the (naked) source offset: 2HEIGHTi = HEIGHTi − 1− ♦FLAG1
i ·

♦FLAG2
i,

2POPi = 1,
�
2STACKi = STACK�i + 2.

Stack Item n◦ 3: The third stack item contains the size: 3HEIGHTi = HEIGHTi − 2− ♦FLAG1
i ·

♦FLAG2
i,

3POPi = 1,
�
3STACKi = STACK�i + 3.

Stack Item n◦ 4: The fourth stack item is empty for CALLDATACOPY and RETURNDATACOPY, mostly
empty for CODECOPY and non empty for EXTCODECOPY where it contains an address popped off
the stack:

1. 
4HEIGHTi = HEIGHTi ·

♦FLAG1
i ·

♦FLAG2
i

4POPi =
♦FLAG1

i ·
♦FLAG2

i

�
4STACKi = (STACK�i + 4) · ♦FLAG1

i ·
♦FLAG2

i

28

2. if
(
♦FLAG1

i = 1 and ♦FLAG2
i = 0

)
then

{
4VAL hi

i = BC_ADDR hi
i

4VAL lo
i = BC_ADDR lo

i

Stack stamp update: STACK�ν
i = STACK�i + 3 +

♦FLAG1
i ·

♦FLAG2
i,

Height update: HEIGHTν
i = HEIGHTi − 3− ♦FLAG1

i ·
♦FLAG2

i,

1.5 Two line instruction stack patterns patterns
1.5.1 Disclaimer

The stack patterns presented in the current section 1.5 apply if and only if STXi = 0.

1.5.2 LOG_X pattern
Supported instructions. The following stack pattern applies to

• LOG0

• LOG1

• LOG2

• LOG3

• LOG4

Relevant instruction decoded columns. Among all instruction decoded columns we focus on the
following flags:

INST ♦PAT ♦PARAM ♦TLI ♦FLAG1 ♦FLAG2 ♦FLAG3

LOG0 logPattern 0 1 0 0 0
LOG1 logPattern 1 1 1 0 0
LOG2 logPattern 2 1 1 0 1
LOG3 logPattern 3 1 1 1 0
LOG4 logPattern 4 1 1 1 1

Graphical representation. The picture is the following

(CTi = 0) Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi h ∅ h− 1 ∅
kVAL hi/ kVAL lo offset ∅ size ∅
kPOPi 1 ∅ 1 ∅
�
kSTACKi st + 1 ∅ st + 2 ∅

Figure 1.12: This table represents the stack pattern of the first row (CTi = 0) of a log instruction. We
write h = HEIGHTi and st = STACK�i.

29

(CTi = 1) Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi ∅ ∅ ∅ ∅
kVAL hi/ kVAL lo ∅ ∅ ∅ ∅
kPOPi ∅ ∅ ∅ ∅
�
kSTACKi ∅ ∅ ∅ ∅

(CTi = 1) Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi h− 2 h− 3 h− 4 ∅
kVAL hi/ kVAL lo topic1 topic2 topic3 ∅
kPOPi 1 1 1 ∅
�
kSTACKi st + 3 st + 4 st + 5 ∅

Figure 1.13: This table represents the stack pattern of the second row (CTi = 1) of a LOG0 and
a LOG3 instruction respectively. The other logs follow the same pattern. As previously we write
h = HEIGHTi = HEIGHTi−1 and st = STACK�i = STACK�i−1.

Constraints. We collect under the moniker logPattern the following collection of constraints:

1. if CTi = 0:

Stack Item n◦ 1: the first stack item of the first row contains the offset: 1HEIGHTi = HEIGHTi,

1POPi = 1,
�
1STACKi = STACK�i + 1

Stack Item n◦ 2: the fourth stack item of the first row is empty: 2EmptyStackItemi;
Stack Item n◦ 3: the third stack item of the first row contains the size: 3HEIGHTi = HEIGHTi − 1,

3POPi = 1,
�
3STACKi = STACK�i + 2

Stack Item n◦ 4: the fourth stack item of the first row is empty: 4EmptyStackItemi;
Stack stamp update: STACK�ν

i = STACK�i + 2 + ♦PARAM;
Height update: HEIGHTν

i = HEIGHTi − 2− ♦PARAM;

2. if CTi = 1:

Stack Item “n◦ 5”: the first stack item of the second row may contain a first topic:
1HEIGHTi = (HEIGHTi − 2) · ♦FLAG1

1POPi =
♦FLAG1,

�
1STACKi = (STACK�i + 3) · ♦FLAG1

Stack Item “n◦ 6”: the second stack item of the second row may contain a second topic:
2HEIGHTi = (HEIGHTi − 3) ·

(♦FLAG2 + (1− ♦FLAG2) · ♦FLAG3
)
,

2POPi =
♦FLAG2 + (1− ♦FLAG2) · ♦FLAG3,

�
2STACKi = (STACK�i + 4) ·

(♦FLAG2 + (1− ♦FLAG2) · ♦FLAG3
)

Stack Item “n◦ 7”: the third stack item of the second row may contain a third topic:
3HEIGHTi = (HEIGHTi − 4) · ♦FLAG2,

3POPi =
♦FLAG2,

�
3STACKi = (STACK�i + 5) · ♦FLAG2

30

Stack Item “n◦ 8”: the fourth stack item of the second row may contain a fourth topic:
4HEIGHTi = (HEIGHTi − 5) · ♦FLAG2 · ♦FLAG3,

4POPi =
♦FLAG2 · ♦FLAG3,

�
4STACKi = (STACK�i + 6) · ♦FLAG2 · ♦FLAG3,

1.5.3 Call pattern
Supported instructions. The following stack pattern applies to all “call instructions” i.e. the
instructions below:

• CALL

• CALLCODE

• DELEGATECALL

• STATICCALL

Relevant instruction decoded columns. Among all instruction decoded columns we focus on the
following flags:

INST ♦PAT ♦TLI ♦FLAG1 ♦FLAG2

CALL callPattern 1 1 0
CALLCODE callPattern 1 1 1
DELEGATECALL callPattern 1 0 0
STATICCALL callPattern 1 0 1

The interpretation is the following: call instructions w with ♦FLAG1 = 1 have δzk
w = δw = 7 and those

with ♦FLAG1 = 0 have δzk
w = δw = 6 (and all call instructions have αzk

w = αw = 1.) Though the
stack pattern does not depend on it, we recall here the interpretation of the second flag ♦FLAG2: it
differentiate between CALL and CALLCODE as well as between DELEGATECALL and STATICCALL.

Graphical representation. We represent the stack pattern when ♦FLAG1 = 0 is in figure ?? and
similarly for ♦FLAG1 = 0 see figure ??.

CTi = 0 Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi h− 2 h− 4 h− 3 h− 5

kVAL hi/ kVAL lo CDO R@O CDS R@C
kPOPi 1 1 1 1
�
kSTACKi st + 1 st + 2 st + 3 st + 4

CTi = 1 Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi h h− 1 ∅ h− 5

kVAL hi/ kVAL lo gas address ∅ success
kPOPi 1 1 ∅ 0
�
kSTACKi st + 5 st + 6 ∅ st + 7

Figure 1.14: The above represents the stack patttern for ♦FLAG1 = 0 (i.e. for DELEGATECALL and
STATICCALLCODE instructions). We write h = HEIGHTi and STACK�i = st.

Constraints. We collect under the moniker callPattern the following collection of constraints:
1. if CTi = 0:

Stack Item n◦ 1: the first stack item of the first row of the instruction: 1HEIGHTi = HEIGHTi − 2− ♦FLAG1
i,

1POPi = 1,
�
1STACKi = STACK�i + 1.

31

CTi = 0 Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi h− 3 h− 5 h− 4 h− 6

kVAL hi/ kVAL lo CDO R@O CDS R@C
kPOPi 1 1 1 1
�
kSTACKi st + 1 st + 2 st + 3 st + 4

CTi = 1 Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi h h− 1 h− 2 h− 6

kVAL hi/ kVAL lo gas address value success
kPOPi 1 1 1 0
�
kSTACKi st + 5 st + 6 st + 7 st + 8

Figure 1.15: The above represents the stack patttern for ♦FLAG1 = 1 (i.e. for CALL and CALLCODE
instructions). Recall that CDO, R@O, CDS, R@C are short hand for CALLDATA_OFFSET, RE-
TURN@OFFSET, CALLDATA_SIZE, RETURN@CAPACITY respectively. We write h = HEIGHTi and
STACK�i = st.

Stack Item n◦ 2: the second stack item of the first row of the instruction: 2HEIGHTi = HEIGHTi − 4− ♦FLAG1
i,

2POPi = 1,
�
2STACKi = STACK�i + 2.

Stack Item n◦ 3: the third stack item of the first row of the instruction: 3HEIGHTi = HEIGHTi − 3− ♦FLAG1
i,

3POPi = 1,
�
3STACKi = STACK�i + 3.

Stack Item n◦ 4: the fourth stack item of the first row of the instruction: 4HEIGHTi = HEIGHTi − 5− ♦FLAG1
i,

4POPi = 1,
�
4STACKi = STACK�i + 4.

Stack stamp update: STACK�ν
i = STACK�i + 7 +

♦FLAG1
i;

Height update: HEIGHTν
i = HEIGHTi − 5− ♦FLAG1;

2. if CTi = 1:

Stack Item “n◦ 5”: the first stack item of the second row of the instruction: 1HEIGHTi = HEIGHTi,

1POPi = 1,
�
1STACKi = STACK�i + 5.

Stack Item “n◦ 6”: the second stack item of the second row of the instruction: 2HEIGHTi = HEIGHTi − 1,

2POPi = 1,
�
2STACKi = STACK�i + 6.

Stack Item “n◦ 7”: the third stack item of the second row of the instruction:
3HEIGHTi = (HEIGHTi − 2) · ♦FLAG1

i,

3POPi =
♦FLAG1

i,
�
3STACKi = (STACK�i + 7) · ♦FLAG1

i.

32

Stack Item “n◦ 8”: the fourth stack item of the second row of the instruction:
4HEIGHTi = HEIGHTi − 5− ♦FLAG1

i,

4POPi = 0,
�
4STACKi = STACK�i + 7 +

♦FLAG1
i.

1.5.4 Create pattern
Supported instructions. The stack pattern we describe below applies to both creation instructions:

• CREATE • CREATE2

Although the CREATE instruction has (δzk
w , αzk

w) = (δw, αw) = (3, 1) and would thus fit into a single
row of the execution trace (δzk

w +αzk
w = 4) we have chosen a unified approach to both create instructions.

Relevant instruction decoded columns. Among all instruction decoded columns we focus on the
following flags:

INST ♦PAT ♦TLI ♦FLAG1

CREATE createPattern 1 0
CREATE2 createPattern 1 1

Graphical representation. We represent the stack pattern for CREATE instructions (i.e. ♦FLAG1 =

0) in figure ?? and that for CREATE2 instructions (i.e. ♦FLAG1 = 1) in figure ??.

CTi = 0 Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi h− 1 ∅ h− 2 h− 2

kVAL hi/ kVAL lo offset ∅ size address (or 0)
kPOPi 1 ∅ 1 0
�
kSTACKi st + 1 ∅ st + 2 st + 3

CTi = 1 Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi ∅ ∅ h ∅
kVAL hi/ kVAL lo ∅ ∅ value ∅
kPOPi ∅ ∅ 1 ∅
�
kSTACKi ∅ ∅ st + 4 ∅

Figure 1.16: The above represents the stack patttern for ♦FLAG1 = 0 (i.e. for CREATE instructions).
We write h = HEIGHTi and STACK�i = st.

CTi = 0 Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi h− 1 h− 3 h− 2 h− 3

kVAL hi/ kVAL lo offset salt size address (or 0)
kPOPi 1 1 1 0
�
kSTACKi st + 1 st + 2 st + 3 st + 4

CTi = 1 Stack Stack Stack Stack
Item 1 Item 2 Item 3 Item 4

kHEIGHTi ∅ ∅ h ∅
kVAL hi/ kVAL lo ∅ ∅ value ∅
kPOPi ∅ ∅ 1 ∅
�
kSTACKi ∅ ∅ st + 5 ∅

Figure 1.17: The above represents the stack patttern for ♦FLAG1 = 1 (i.e. for CREATE2 instructions).
We write h = HEIGHTi and STACK�i = st.

33

Constraints. We collect under the moniker createPattern the following collection of constraints:

1. if CTi = 0:

Stack Item n◦ 1: the first stack item of the first row of the instruction: 1HEIGHTi = HEIGHTi − 1,

1POPi = 1,
�
1STACKi = STACK�i + 1.

Stack Item n◦ 2: the second stack item of the first row of the instruction:
2HEIGHTi = (HEIGHTi − 3) · ♦FLAG1

i

2POPi =
♦FLAG1

i,
�
2STACKi = (STACK�i + 2) · ♦FLAG1

i.

Stack Item n◦ 3: the third stack item of the first row of the instruction: 3HEIGHTi = HEIGHTi − 2,

3POPi = 1,
�
3STACKi = STACK�i + 2 +

♦FLAG1
i.

Stack Item n◦ 4: the fourth stack item of the first row of the instruction:
4HEIGHTi = HEIGHTi − 2− ♦FLAG1

i,

4POPi = 0,
�
4STACKi = STACK�i + 3 +

♦FLAG1
i.

Stack stamp update: STACK�ν
i = STACK�i + 4 +

♦FLAG1;

Height update: HEIGHTν
i = HEIGHTi − 2− ♦FLAG1;

2. if CTi = 1:

Stack Item “n◦ 5”: the first stack item of the second row of the instruction is always empty:
1EmptyStackItem;

Stack Item “n◦ 6”: the second stack item of the second row of the instruction is always empty:
2EmptyStackItem;

Stack Item “n◦ 7”: the third stack item of the second row of the instruction satisfies: 3HEIGHTi = HEIGHTi,

3POPi = 1,
�
3STACKi = STACK�i + 4 +

♦FLAG1
i.

Stack Item “n◦ 8”: the fourth stack item of the second row of the instruction is always empty:
4EmptyStackItem;

1.6 Constraints
1.6.1 Stack consistency
This section describes the consistency constraints that ensure that any stack item excavated from the
stack of a given execution context at a given height coincides with the last stack item pushed onto the
same execution context’s stack at the same height. We introduce some interleaved columns:

34

1. CN� 4 = CN�CN�CN�CN

2. 1234HEIGHT = 1HEIGHT� 2HEIGHT� 3HEIGHT� 4HEIGHT

3. �
1234STACK = �

1STACK��
2STACK��

3STACK��
4STACK

4. 1234POP = 1POP� 2POP� 3POP� 4POP

5. 1234VAL hi = 1VAL hi� 2VAL hi� 3VAL hi� 4VAL hi

6. 1234VAL lo = 1VAL lo� 2VAL lo� 3VAL lo� 4VAL lo

This contains some meaningless rows: the rows i with CN� 4
i = 0 correspond to padding; the rows i

with 1234HEIGHTi = 0 correspond to empty stack items. Consider a row permutation X 7→ [X]
� such

that ([
CN� 4

]
�

, [1234HEIGHT]� ,
[

�
1234STACK

]
�
)

are in lexicographically order.

1. if
([

CN� 4
]
�

i+1
= 0 or [1234HEIGHT]�i+1 = 0

)
we don’t impose any consistency constraints;

2. if
([

CN� 4
]
�

i+1
6= 0 and [1234HEIGHT]�i+1 6= 0

)
then

(a) if 
[
CN� 4

]
�

i+1
=

[
CN� 4

]
�

i

and
[1234HEIGHT]�i+1 = [1234HEIGHT]�i

then
i. [1234POP]�i+1 + [1234POP]�i = 1,

ii. if [1234POP]�i+1 = 1 then
[

1234VAL hi
]
�

i+1
=

[
1234VAL hi

]
�

i[
1234VAL lo

]
�

i+1
=

[
1234VAL lo

]
�

i

In other words, the binary flag column [1234POP]� at a given height oscillates (we push, pop,
push, pop, push, etc…); when popping an item (i.e. when [1234POP]�i+1 = 1), we retrieve
the value previously pushed at that height;

(b)

if


[
CN� 4

]
�

i+1
6=

[
CN� 4

]
�

i

or
[1234HEIGHT]�i+1 6= [1234HEIGHT]�i

then [1234POP]�i+1 = 0

i.e. the first time we encounter a given (nonzero) height of a (nonzero) context it is to push
an item at that height (not to pop a nonexisting item).

35

1.6.2 Program counter, PUSHes and JUMPs)
The PC is updated both in the temporal execution trace and in a reordered execution trace (to resume
execution where it left off when executing a CREATE-type instruction or a CALL-type instruction.) The
constraints below detail the “extraordinary” or “unusual” updates to the program counter induced by
PUSH-type instructions and JUMP-type instructions. To this end we introduce a column PCν that stores
the expected new program counter. This expected new program counter isn’t necessarily the next value
of the program counter. Indeed exceptions8 may impose an abrupt execution context switch.

The constraints below are written under the assumption that CNi 6= 0.

1. if ♦PUSH� i = 1 then

(a) Put the push argument on stack:{
4VAL hi

i = 〈PUSH_VALUE hi〉i
4VAL lo

i = 〈PUSH_VALUE lo〉i

(b) We set the expected new program counter: PCν
i = PCi + 1 + ♦PUSH_PARAMi.

2. if ♦JUMP� i = 1 the following sets the expected new program counter:

(a) if 〈INST〉i = JUMP9 then
i. We set the expected new program counter:{

if JOOBi = 1 then PCν
i = CODESIZEi

if JOOBi = 0 then PCν
i = 1VAL lo

i

ii. If the jump is carried out (and not thwarted by an exception) we check its validity, i.e.
if CNi+1 = CNi then{

if 〈INST〉i+1 = JUMPDEST then JUMPXi+1 = 0
if 〈INST〉i+1 6= JUMPDEST then JUMPXi+1 = 1

(b) if 〈INST〉i = JUMPI10 then
i. We set the expected new program counter:

A. if
(
4VAL hi

i = 0 and 4VAL lo
i = 0

)
then PCν

i = 1 + PCi (no jump is triggered);

B. if
(
4VAL hi

i 6= 0 or 4VAL lo
i 6= 0

)
then{

if JOOBi = 1 then PCν
i = CODESIZEi

if JOOBi = 0 then PCν
i = 1VAL lo

i

furthermore, if the jump is carried out (and not thwarted by an exception) we check
its validity, i.e. if CNi+1 = CNi then{

if 〈INST〉i+1 = JUMPDEST then JUMPXi+1 = 0
if 〈INST〉i+1 6= JUMPDEST then JUMPXi+1 = 1

Note that the JOOB flag is justified in the rare checks module.
8outOfGas or stackUnderflow for JUMP-type instructions, outOfGas or stackOverflow for PUSH-type instructions
9In implementation we should use “if 〈INST〉i 6= JUMPI” instead.

10Similarly, use “if 〈INST〉i 6= JUMP” instead.

36

3. Let us (and just this once) write UPCU =
♦PUSH� +

♦JUMP� where UPCU is shorthand for
“Unusual Program Counter Update”. Then we ask that

if UPCUi = 0 then PCν
i = 1 + PCi

We give some context as to the “PCi+1 = CODESIZEi” constraint. First, remark that the CODESIZE is
indeed available (it is a column in the call stack). Secondly, recall that in our padding of the bytecode
in the ROM module, we always append at least 32 zero bytes (0x00) after the end of the bytecode; in
case of an out of bounds jump the zk-evm jumps to PC = CODESIZE and the associated opcode will
be 0x00 (not a JUMPDEST.)

The correct retrieval of the context’s program counter the reentrance into the current context after
a CALL-type instruction or CREATE-type instruction is most easily expressed after reordering of the
execution trace. To that effect, consider a reordering of the columns X 7→ [X]� such that(

[CN]
�

, [STACK�]�
)
≡ lex. ordered

We drop the CNi+1 6= 0 assumption and replace it with:

The constraints below are written under the assumption that [CN]
�

i+1 6= 0.

1. if [CNi+1]
�

= [CNi]
� then

[PCi+1]
�

= [PCν
i]

�

2. if [CNi+1]
� 6= [CNi]

� then [PCi+1]
�

= 0.

Note: we could just as well express the constraints for jump and push instructions in the
standard time ordered version of the execution trace. This would be more economical
and their expression would be precisely the same, just without the ordered columns. The
(context, stamp) sorted version is useful for updating the program counter in a context
switch, i.e. some variation of CALL or CREATE.

1.6.3 Miscellaneous flags
The VALTF

We specify the VALTF column (short for VALUE_TRANSFER_FLAG). It is a binary flag which equals 1
iff the instruction is a CALL-type instruction which transfers value. Recall that for the callPattern the
third stack item on the second row contains the value argument (if any) of the CALL-type instruction.
With this in mind, VALTF is defined by

1. if ♦CALL� i = 0 then VALTF = 0

2. if ♦CALL� i = 1 then

(a) if 3VAL lo
i+1 = 0 then VALTFi = 0

(b) if 3VAL lo
i+1 6= 0 then VALTFi = 1

The ACCOUNT_HAS_BALANCE_FLAG

We specify the ACCHB flag. Its specification is simple:{
if BALANCEi = 0 then ACCHBi = 0
if BALANCEi 6= 0 then ACCHBi = 1

37

1.6.4 Gas
This section deals with the gas in the hub. Gas is a complex topic. Instructions come with a static gas
cost which is instruction decoded from 〈INST〉. Instructions may incur extra costs which are computed
as a combination of the following we enumerate here:

Arithmetic. The EXP opcode incurs a dynamic cost Gexpbyte · n where n is 0 is the exponent e is 0,
and blog256(e)c otherwise. This dynamic gas cost is made available in the ALU_DYNAMIC_GAS
column (which is justified in the ALU module.)

Storage. SLOAD and SSTORE (especially) have complex pricing; the gas cost is computed in the storage
module and made available in the STOG column (it is justified in the storage module.)

Memory Expansion. The memory expansion cost is made available in the ∆MXC column (which is
justified in the memory expansion module.)

Linear cost. Certain instructions charge an extra fee that is linear in a size argument. Complexity
arises from the fact that these sizes may be measured in bytes or in EVM words. For the latter
case the Hub contains a SIZE_IN_EVM_WORDS column (which is justified in the memory
expansion module.)

CALL costs CALL-type instructions come with extra costs not found elsewhere:

Transfer cost. CALLs which transfer funds cost Gcallvalue = 9000 more.
Address warmth. CALLs to warm addresses cost less; warmth of an address is justified in the

The first requirement which we impose is that gas columns ought to be counter constant

1. if CTi+1 6= 011 then 
GASω

i+1 = GASω
i

GASρ
i+1 = GASρ

i

GASκ
i+1 = GASκ

i

GASν
i+1 = GASν

i

As a consequence we impose gas to be computed once per instruction, precisely when CTi = 0. We
therefore impose that

The remainder of this section is written under the assumption CTi = 0.

The hub computes gas as follows. From the point of view of the hub, the initial gas is imported from
block data. It defines the first value of GASω within a transaction. Every instruction induces gas
depletion as follows:

GASω (1)−−−→ GASρ (2)−−−→ GASκ (3)−−−→ GASν

Steps (1) and (2) could easily be combined into a single step (thus rendering the GASρ column obsolete.)
Every time a halting instruction is executed which doesn’t put an end to the transaction (but only

switches from the current context to its parent context) the descendant context receives a gas refund.
We thus impose the following constraints:

2. if TX#i 6= 0 and TX#i = TX#i+1 then

GASρ
i+1 = GASω

i+1 +
♦HALT� i · (1− GENERAL_EXCEPTIONi) · GASν

i

In other words: if the previously executed instruction was a halting operation and it didn’t
trigger an exception the “old gas” of the parent context receives a refund which is equal to the
descendant context’s remaining gas

11I.e. if CTi+1 = 1

38

The second step is about subtracting static and dynamic gas costs:

3. if TX#i 6= 0 then

GASκ
i = GASρ

i −
♦STATGi (1.1)

− ♦ALU� i ·Gexpbyte · EXPONENT_SIZE_IN_BYTESi (1.2)
− ♦STO� i · STOGi (1.3)

− ♦WRM� i ·

[
WARMi · (1− ♦SELFDESTRUCT_FLAGi) ·Gwarmaccess

+(1−WARMi) ·Gcoldaccountaccess

]
(1.4)

− ♦CALL� i · VALTFi ·

[
DEAD_FLAGi ·Gnewaccount (a)

+Gcallvalue (b)

]
(1.5)

− ♦MXP� i ·∆MXCi (1.6)
− ♦COPY� i ·Gcopy · SEVMWi (1.7)
− ♦HASH_FLAGi ·Gkeccak256word · SEVMWi (1.8)
− ♦LOG� i ·Glogdata · 3VAL lo

i (1.9)
− ♦RETURN� i · CTYPEi ·Gcodedeposit · 3VAL lo

i (1.10)
− ♦SELFDESTRUCT_FLAGi · ACCHBi ·Gnewaccount · 3VAL lo

i (1.11)

We provide some details. (1) accounts for static gas; static gas is justified against the instruction
decoder (as is evident from the ♦) (2) accounts for the dynamic gas cost associated with exponenti-
ation; the EXPONENT_SIZE_IN_BYTES column is justified in the RAM module; it is zero unless
the instruction is EXP i.e. exponentiation mod 2256; (3) accounts for the dynamic gas cost of storage
instructions; the STOG column is justified in the storage module; (4) accounts for costs associated
with access costs of accounts; the WARM flag is justified in the warmth module; (5) accounts for ex-
traordinary costs associated with CALL-type instructions; there is (a) the cost associated with CALLing
upon a non existent account (b) the cost associated with a value transfer; (6) accounts for memory
expansion costs; the ∆MXC column is justified in the memory expansion module; (7) accounts for
“copy” instructions12 which encur a linear cost in the number of evm words copied; (8) accounts for
operations that hash a slice of memory13 and incur a linear cost in the number of evm words hashed;
(9) accounts for the portion of log pricing that is linear in the number of bytes to log; (10) accounts for
code deployment costs: they are paid when encountering a RETURN instruction (i.e ♦RETURN� = 1)
in a deployment context (i.e. CTYPEi = 1.) Notations for gas constants (Gexpbyte etc…) are taken
from the Ethereum Yellow Paper.

The next step in the gas computation is to compute the “new gas”. The main complication arises
with CALL-type and CREATE-type instructions. The Gas modules exists precisely to justify the gas
endowment in these cases:

4. if TX#i 6= 0 then
GASν

i = GASκ
i −

♦CALL� · GASε
i

− ♦CREATE� · GASε
i

12i.e. RETURNDATACOPY, CALLDATACOPY, CODECOPY and EXTCODECOPY
13i.e. SHA3 and CREATE2

39

1.7 Workflow
1.7.1 Module selectors
Stamp counter-constancy constraints

Recall that a column X is counter-constant if CTi 6= 0 =⇒ Xi = Xi−1, see section 1.2.2. We impose
counter-constancy constraints on “module stamp” columns:

1. ACC �

2. ALU �

3. BIN �

4. EXP �

5. GAS �

6. KEC �

7. LOG �

8. MMU �

9. MXP �

10. OOB �

11. SHV �

12. STO �

13. WCP �

14. WRM �

These constraints matter for ♦TWO_LINE_INSTRUCTIONs: a single instruction should be dis-
patched to the relevant modules. This is also the reason why in the following section we state all
constraints under the “CTi = 0” hypothesis:

Throughout subsection 1.7.1 we systematically assume that CTi = 0.

stackException sensitive selectors

The exponent module, the out of bounds module, and the storage module are triggered iff
(1) the stack raises no stackException and (2) the instruction raises the appropriate module flag. In
other words: 

EXP � i = (1− STXi) ·
♦EXP� i

OOB � i = (1− STXi) ·
♦OOB� i

STO � i = (1− STXi) ·
♦STO� i

and the associated module stamps are updated accordingly: EXP � i = EXP � i−1 + EXP � i

OOB � i = OOB � i−1 + OOB � i

STO � i = STO � i−1 + STO � i

The inclusion of the storage module in this list may seem surprising. One would expect the storage
module to only be triggered if both previously stated conditions hold and the instruction raises no out
of gas exception. However the storage module is unique among all “instruction executing modules14”
(other than the hub itself) in that it computes its own gas cost. SSTORE pricing in particular is complex
and closely connected with the storage operation itself so we have chosen to do both at the same time
and in the same place. It should be added that this doesn’t introduce undesirable modifications to
storage: the storage module is self-reverting. Thus any storage operation carried out by the storage
module which induces an out of gas exception in the hub will be done (in storage) in such a way as to
revert itself.

14i.e. ALU, binary, mmu and ram, word comparison

40

stackException and callStackOverflowException sensitive selectors

The address shaving module, the memory expansion module and the warmth module are trig-
gered iff (1) the stack raises no stackException, (2) the instruction raises no callStackOverflowException,
and (3) the instruction raises the relevant module flag. In other words:

MXP � i = (1− STXi) · (1− CSDXi) ·
♦MXP� i

SHV � i = (1− STXi) · (1− CSDXi) ·
♦SHV� i

WRM � i = (1− STXi) · (1− CSDXi) ·
♦WRM� i

and the associated module stamps are updated accordingly: MXP � i = MXP � i−1 + MXP � i

SHV � i = SHV � i−1 + SHV � i

WRM � i = WRM � i−1 + WRM � i

stackException and outOfGasException sensitive selectors

The ALU module, the binary module, the word comparison module and the hash info
module are triggered iff (1) the stack raises no stackException, (2) the instruction raises no
outOfGasException, and (3) the instruction raises the relevant module flag. In other words:

ALU � i = (1− STXi) · (1− OOGXi) ·
♦ALU� i

BIN � i = (1− STXi) · (1− OOGXi) ·
♦BIN� i

KEC � i = (1− STXi) · (1− OOGXi) ·
♦KEC� i

WCP � i = (1− STXi) · (1− OOGXi) ·
♦WCP� i

and the associated module stamps are updated accordingly:
ALU � i = ALU � i−1 + ALU � i

BIN � i = BIN � i−1 + BIN � i

KEC � i = KEC � i−1 + KEC � i

WCP � i = WCP � i−1 + WCP � i

LOG module selector

The log-info module is triggered iff (1) the stack raises no stackException (2) the context isn’t
static (3) the instruction doesn’t lead to an outOfGasException (4) the instruction raises the “log
flag.” In other words:{

LOG � i = (1− STXi) · (1− CSTATi) · (1− OOGXi) ·
♦LOG� i

LOG � i = LOG � i−1 + LOG � i

Gas module selector

The gas module, triggers iff (1) the stack raises no stackException, (2) the instruction raises
no callStackOverflowException and (3) the instruction is a CALL-type instruction, a CREATE-type
instruction, a halting instruction, the instruction raises an outOfGasException or the instruction
raises a generalException.

In other words if we write just this once

GAS_TRIGGERi =
(
1− STXi

)
·
(
1− CSDXi

)
·


OOGXi

+ GENXi

+
♦HALT� i

+
♦CALL� i

+
♦CREATE� i


41

We then set 

{
if GAS_TRIGGERi 6= 0 then GAS � i = 1

if GAS_TRIGGERi = 0 then GAS � i = 0

LOG � i = (1− STXi) · (1− CSTATi) · (1− OOGXi) ·
♦LOG� i

LOG � i = LOG � i−1 + LOG � i

Note: we really only need GENX … including OOGX is done purely for mental comfort. Note further-
more that the gas module imports OOGX.

MMU module selector

The trigger for the MMU module is by far the most complex trigger. The conditions that trigger a
call to the MMU module are (1) the stack raises no stackException (2) the instruction doesn’t lead
to an outOfGasException (3) a host of instruction dependent conditions which we will describe after
giving the selector expression. Thus the MMU selector is defined by the constraint

MMU � i = (1− STXi) · (1− OOGXi)︸ ︷︷ ︸
(0)

·



STDi (1)

+
♦REVERT� i ·

[
CSD 6= 1

]
i

(2)

+
♦RETURN� i ·

[
CTYPEi ·

[
CSD = 1

]
i

+
[
CSD 6= 1

]
i

]
(3)

+
♦LOG� i · (1− CSTATi) (4)

+
♦CDL� i · (1− CDL_OOBi) (5)

+
♦RDC� i · (1− RDCXi) (6)

+
♦CREATE� i · (1− CSDXi) · (1− CSTATi) (7)

+
♦CALL� i · (1− CSDXi) · (1− CSTATi · VALTFi) (8)


where we have used the following short hands:

STD =
♦MMU� − ♦RETURN� − ♦REVERT� − ♦CDL� − ♦LOG� − ♦CREATE� − ♦CALL�

and
[
CSD = 1

]
= 1−

[
CSD 6= 1

]
is the binary flag defined by

[
CSD = 1

]
i
= 1 ⇐⇒ CSDi = 1.

We provide some details: (0) filters out instructions that produce a stackException or an outOfGasException;
(1) STD is (by construction) a binary column; it lights up precisely for MLOAD, MSTORE, MSTORE8, SHA3,
CODEDATACOPY, EXTCODEDATACOPY, CALLDATACOPY; thus any of these instructions which passes the
“stack and gas hurdle” makes it to the MMU; (2) filters out REVERTs in the root context of a trans-
action; (3) does the same for RETURNs except if the root context is a deployment context (i.e. if the
transaction is a “deployment transaction”); (4) filters out LOG-type instructions in “static” execution
contexts; (5) filters out CALLDATALOAD instructions that raise the CDL_OOB flag15 (6) is more serious:
it filters out RETURNDATACOPY instructions that raise the returnDataCopyException; (7) filters out
CREATE(2) instructions at call stack depth = 1024 aswell as attempts to run such an instruction in a
static execution context; (8) filters out CALL-type instructions at call stack depth = 1024 and attempts
to transfer funds in a call when the execution context is static. Note: we may not do the filtering
of CALLDATALOADs at the hub level: we can do it in the MMU by doing “no-op” filtering
there.

15recall that this flag signifies that the requested evm word is fully out of bounds of the current context’s call data; it
is justified in the out of bounds module;

42

Chapter 2

MMU

2.1 Column descriptions
It is understood that whenever we write “〈X〉 is the import of the X column” that, in reality, it is the
import of X · bRAM where bRAM is a binary column which equals 1 iff (a) no exception occurs at that
row and (b) the instruction is one that touches memory. The binary column bRAM is thus obtained as
the product of an instuction decoded column which detects RAM instructions and a binary column
which detects exceptions.

1. 〈MMU_STAMP〉: imported column containing the RAM stamp; abbreviated to 〈MMU � 〉;

2. µINSTRUCTION_STAMP: column containging the micro instruction stamp; abbreviated to
µINST�;

3. IS_MICRO_INSTRUCTION: binary flag that equals zero during the precomputation phase and
equals to 1 for rows containing micro instructions; abbreviated to IS_µ;

4. TOTAL_NUMBER_OF_MICRO_INSTRUCTIONS: established during the precomputation phase;
contains the total number of micro instructions the current macro instruction is converted to;
abbreviate to TOTµ;

TOTµ is constant while IS_µ = 0, decreasing until it hits 0 while IS_µ = 1. It hitting 0 signifies the
final micro instruction in the sequence of micro instructions the macro instruction decomposes into.

5. 〈OFF1〉: import of the 1VAL lo column; contains the first offset;

6. 〈OFF2〉 hi: import of the 2VAL hi column; contains a potential second offset;

7. 〈OFF2〉 lo: import of the 2VAL lo column; contains a potential second offset;

8. 〈SIZE〉: import of the 3VAL lo column; contains a size (including code sizes);

9. 〈VAL hi〉 and 〈VAL lo〉: import of the 4VAL hi, 4VAL lo columns;

Note that we have given these imported columns suggestive names rather than, say, 〈 1VAL lo〉 etc… We
do this purely for improved readability. As suggested by their names, the 〈OFF1〉 and (〈OFF2〉 hi, 〈OFF2〉 lo)
will always contain offset arguments, 〈SIZE〉 will always contain a size argument, while 〈VAL hi〉 and
〈VAL lo〉 will always contain either a value loaded from RAM or call data, a value to store in RAM or
an address. Note that we don’t import 1VAL hi: if the instruction makes it to the RAM preprocessor
its destination offset must be small (i.e. a 3 byte integer.) Note that we do import 2VAL hi: the second
offset (which points to either return data, call data or bytecode) can’t produce memory expansion,
hence it won’t have been tested for smallness. The current module however must test for its size, hence
the import.

43

10. 〈CN〉: imported column; contains the current execution context number;

11. 〈CALLER〉: imported column; contains the current caller execution context number;

12. 〈RETURNER〉: imported column; contains the current returner execution context number;

13. CONTEXT_SOURCE: column containing the execuction context number of the source context;
abbreviated to CN_S

14. CONTEXT_TARGET: column containing the execuction context number of the target context;
abbreviated to CN_T

15. COUNTER: counter column; in the precomputation phase counts either from 0 to 2 or from 0 to
15; in the rows containing micro instruction equals to 0; abbreviated to CT;

16. OFFSET_OUT_OF_BOUNDS: binary column; can only light up for code copy and call data copy
instructions; signifies when an “source offset” is large; abbreviated to OFF_OOB;

17. ♦PRECOMPUTATION: instruction decoded column that indicates the precomputation type as-
sociated with a given parametrized instruction; abbreviated to ♦PRE;

“Source offsets” associated with code copy and call data instructions don’t get tested for smallness
(i.e. their ability to fit into 3 bytes): the Memory Expansion Module ignores them since they don’t
induce memory expansion. The OFF_OOB binary flag lights up as soon as the relevant offset (〈OFF2〉
for CODECOPY, EXTCODECOPY, CALLDATACOPY instructions 〈OFF1〉 for CALLDATALOAD) is ≥ the reference
size 〈REFS〉 (which is ether the code size or the call data size.)

We now list some columns that will be passed down to the RAM data processor. These are limb
offset and byte offset columns. They typically contain the quotient and remainder of the euclidean
division of some absolute offset by 16. These values need to be justified, hence the inclusion of byte
and prefix (i.e. accumulator) columns that provide the respective (short) byte decompositions.

18. SOURCE_LIMB_OFFSET: abbreviated to SLO;

19. SOURCE_BYTE_OFFSET: contains a number in the range {0, 1, . . . , 15}; abbreviated to SBO;

20. TARGET_LIMB_OFFSET: abbreviated to TLO;

21. TARGET_BYTE_OFFSET: contains a number in the range {0, 1, . . . , 15}; abbreviated to TBO;

22. NIB_1, NIB_2, NIB_3, NIB_4, NIB_5, NIB_6: nibble columns; typically contain the remainder
of a euclidean division by 16 or some expression constructed from two such remainders;

23. BYTE_1, BYTE_2, BYTE_3, BYTE_4, BYTE_5, BYTE_6, BYTE_7, BYTE_8: byte columns;

24. ACC_1, ACC_2, ACC_3, ACC_4, ACC_5, ACC_6, ACC_7, ACC_8: “accumulator” columns;

The accumulator columns “accumulate” the bytes of some byte decomposition. The value whose bytes
are being accumulated will typically be the quotient of some euclidean division by 16, e.g. that of some
offset, some size parameter, some offset plus size parameter, or some adjusted nonnegative difference,
etc… If OFF_OOB = 0 it targets a 3 byte integer; if OFF_OOB = 1 it targets 16 byte integers;

25. [[1]], [[2]], …, [[8]]: 〈MMU � 〉-constant bit columns;

26. ALIGNED: 〈MMU � 〉-constant bit column; indicates whether certain offsets are aligned and hence
whether certain micro-instructions may be done fast by the RAM data processor, i.e. without
resorting to byte decompositions;

27. FAST: 〈MMU � 〉-constant bit column; indicates whether a micro-instructions will be done fast
by the RAM data processor, i.e. without resorting to byte decompositions; it is completely
determined by the micro-instruction;

44

28. MIN: column which may at times contain the “real size” of certain macro instructions; such a
real size may is typically computed as a minimum between context data (e.g. CALLDATA_SIZE
or CODESIZE) and a size stack argument;

29. TERNARY: 〈MMU � 〉-constant ternary column i.e. it takes values in {0, 1, 2}; abbreviated to
TERN;

2.2 Offset preprocessing
2.2.1 Absolute and relative offsets
In our arithmetization of memory, offsets can be absolute or relative. Thus when the RAM pre-
processor imports two offset columns from the stack, 〈OFF1〉 and 〈OFF2〉, the interpretation of these
offsets depends on the current instruction.

Absolute offsets. An execution context’s RAM is a word addressable byte array. As such every
byte has an absolute position within an execution context’s memory. Offset arguments that refer to
a position within the current execution context’s RAM, i.e.

1. the offset argument 〈OFF1〉 of MLOAD, MSTORE, MSTORE8,

2. the “destination” offset argument 〈OFF1〉 to any CODECOPY-type instructions,

3. the “destination” offset argument 〈OFF1〉 to CALLDATACOPY and RETURNDATACOPY,

4. the offset argument 〈OFF1〉 of any LOG-type instructions,

5. the offset argument 〈OFF1〉 of SHA3,

6. the offset argument 〈OFF1〉 of CREATE and CREATE2,

7. the offset argument 〈OFF1〉 of RETURN and REVERT

are absolute.

Relative offsets. When the current execution context C executes (without raising an exception) on
a CALL-type instruction it spawns a descendant context D . At the same time, the zk-evm fixes, once
and for all, some immutable characteristics of that descendant context D . For instance, it fixes its
CALLER context number1. It also fixes D ′s CALLDATA_OFFSET and CALLDATA_SIZE parameters.
These are taken straight from the CALL-type instruction’s 6 or 7 stack arguments, namely the offset
and size parameters which define the call data.

Any access to call data (i.e. CALLDATALOAD, CALLDATACOPY but also CALLDATASIZE) performed while
executing within the execution context D uses one or both of these execution context characteristics. In
particular, the first offset parameter of CALLDATALOAD and the second offset parameter of CALLDATACOPY
must be interpreted as offsets within C ’s RAM relative to CALLDATA_OFFSET. Accordingly, the read
operations that these two instructions require take place in C ’s RAM using the absoluteoffsets one
imagines:

• CALLDATA_OFFSET + 〈OFF1〉 for CALLDATALOAD;

• CALLDATA_OFFSET + 〈OFF2〉 for CALLDATACOPY;
1it is the context number of C

45

We note at this point that a given execution context’s RAM is immutable while the zk-evm is
executing in a different execution context. Thus, resuming our previous discussion, D ’s call data
(actually, C ’s RAM as a whole) is immutable while execution is taking place in D (or any of C ’s
descendant contexts.) Applying changes to C ’s RAM requires first resuming execution of C which in
turn requires exiting D for good.

Similarly, when D exits (gracefully or not) it endows C with (potentially emtpy) return data. In
the zk-evm this is achieved by fixing some mutable characteristics of the parent context C . Thus C is
assigned a (new) RETURNER context number2. Furthermore, C is assigned RETURNDATA_OFFSET
and RETURNDATA_SIZE parameters. These are zero by default unless D exits gracefully with a data-
returning halt operation3, in which case they are the two stack arguments to the RETURN or REVERT
instruction that conclude D ’s execution.

In close analogy to the call data case, any access to return data (i.e. RETURNDATACOPY and
RETURNDATASIZE) performed while executing within the execution context C uses one or both of
the RETURNDATA_OFFSET and RETURNDATA_SIZE parameters. Thus the second offset parameter
of RETURNDATACOPY is interpreted by the zk-evm as an offset within D ’s RAM relative to RETURN-
DATA_OFFSET. Accordingly, all read operations this requires take place in D ’s RAM starting at the
absolute offset RETURNDATA_OFFSET + 〈OFF2〉.

2.2.2 RAM constancy
We say that a column X is stamp-constant if it satisfies:

〈MMU � 〉i+1 = 〈MMU � 〉i =⇒ Xi+1 = Xi.

All imported columns are automatically 〈MMU � 〉-constant. We further ask that the following con-
stants be 〈MMU � 〉-constant

1. CN_S and CN_T

2. OFF_OOB

3. all the nibble columns,

4. all the bit columns [[1]], …, [[8]].

2.2.3 Columns established during precomputation
Some columns remain constant as long as we are in the precomputation phase. We say that a column
X is established in precomputation if it satisfies:

IS_µi+1 = 0

and
IS_µi = 0

=⇒ Xi+1 = Xi

The precomputation phase (which is characterized by IS_µ ≡ 0) of a macro instruction spans 3 or 16
rows depending on the binary column OFF_OOB. Columns that are established during precomputation
are constant during precomputation. The general principle is that these columns are “vetted” during
that phase and serve as micro-instruction-flow defining parameters in the micro-instruction writing
phase (which is characterized by IS_µ ≡ 1.) Examples include (columns containing the) quotients and
remainders of euclidean divisions. These are typically euclidean divisions of offsets and sizes by 16.
The following columns are established in precomputation:

2it is, unsurprisingly, the context number of D .
3i.e. through a REVERT instruction that doesn’t raise a memory expansion exception or a RETURN instruction with

similar restrictions if D isn’t a deployment context.

46

1. SLO and SBO

2. TLO and TBO

3. QUOT1 and QUOT2

4. NIB_1 and NIB_2

5. TOTµ

Once the preprocessing exits the precomputation phase and enters the micro-instruction writing
phase (which is characterized by IS_µ ≡ 1) these columns may start changing. Some may increase
/ decrease by 1 with every successive row. This is typically the case for quotient columns which will
become limb offsets in the RAM data processor. Operations that span multiple limbs will typically see
their limb offsets grow by one with every successive micro-instruction (though there are exceptions).
The TOTµ column obeys this logic perfectly: it decreases by one with every micro instruction until it
hits 0.

Established columns are completely reset with every new macro-instruction.

2.2.4 Binary, ternary, nibble and byte columns
The following columns are binary columns, i.e. they are columns X satisfying for for all i, Xi·(1−Xi) = 0:

1. ALIGNED

2. [[1]],

3. [[2]],

4. [[3]],

5. [[4]],

6. [[5]],

7. [[6]]

8. IS_µ

We ask that the following columns contain bytes (i.e. integers in the range {0, 1, . . . , 255}):

1. BYTE_1

2. BYTE_2

3. BYTE_3

4. BYTE_4

5. BYTE_5

6. BYTE_6

7. BYTE_7

8. BYTE_8

We ask that the following columns contain nibbles (i.e. integers in the range {0, 1, . . . , 15}):

1. NIB_1

2. NIB_2

3. NIB_3

4. NIB_4

5. NIB_5

6. NIB_6

2.2.5 Heartbeat
The heartbeat of the RAM preprocessor is more complex than that of most other modules. The
job of the preprocessor is to decompose RAM macro-instructions into a series of RAM micro-
instructions. This task is decomposed into two phases:

1. precomputation: 3 or 16 rows;

2. micro-instruction writing: arbitrary number of rows;

The precomputation does all the offsets related byte decompositions required to decide on the micro
instruction flow. Most of the time offsets and sizes have already been checked for smallness by the
Memory Expansion Module. For such instructions computing the requisite euclidean divisions and
comparison can be done in 3 rows.

However, offsets that point within call data or bytecode haven’t been checked for smallness up
to this point: we have had no reason to do so as they can’t induce memory expansion. Recall that
if they are too large (i.e. exceed the call data size or code size) the instruction will simply write
SIZE many 0’s into memory. Smallness for offsets that point to return data, while also incapable of
producing memory expansion, is tested in a separate module. This module also test for max code size

47

constraints. RETURNDATACOPY and RETURN instructions in a deployment context whose maximal offset
excedes RETURNDATA_SIZE4 or the CODESIZE parameter5 don’t make it to the RAM preprocessor in
the first place. This smallness check is required. This check requires a byte decomposition of integers
of that fit into ≤ 16 · 8 + 1 = 129 bits.

There is thus a nondeterministic bit OFF_OOB that indicates whether offsets overshoot CDS or
MaxCodeSize. And so depending on this nondeterministic bit the precomputation phase for CALLDATACOPY,
CALLDATALOAD, as well as CODECOPY and EXTCODECOPY instructions, may require 16 rows6.

The second phase concerns the micro-instruction writing per se. Deciding upon the order of opera-
tions is straightforward in theory but tricky when expressed in terms of contraints, we shall not dwell
on it here. Suffice it to say that a given macro-instruction may decompose into an arbirary (though
small) number of micro-instructions TOTµ.

Both of these phases are required to process a single RAM-macro-instruction. These two phases
dictate the heartbeat of the module.

1. 〈MMU � 〉 is nondecreasing in the sense that ∀i, 〈MMU � 〉i+1 ∈ {〈MMU � 〉i, 1 + 〈MMU � 〉i};

2. 〈MMU � 〉0 = 0;

3. if 〈MMU � 〉i = 0 then the entire i-th row is null; in particular the first row is all zeros;

4. if 〈MMU � 〉i+1 6= 〈MMU � 〉i then

(a) IS_µi+1 = 0;
(b) CTi+1 = 0;
(c) TOTµ

i+1 6= 0;

Regarding the constraint on TOTµ
i+1: instructions that make it to the RAM preprocessing always

require at least one micro-instruction to process. Operations with size 0 for instance or which
raise an exception are filtered out and don’t make it to the preprocessor.

5. if 〈MMU � 〉i 6= 0 then

(a) if IS_µi = 0 then
i. if OFF_OOBi = 0 then

A. if CTi 6= 2 then {
CTi+1 = 1 + CTi

IS_µi+1 = 0

B. if CTi = 2 then IS_µi+1 = 1

ii. if OFF_OOBi = 1 then
A. if CTi 6= 15 then {

CTi+1 = 1 + CTi

IS_µi+1 = 0

B. if CTi = 15 then IS_µi+1 = 1

6. if IS_µi = 1 then CTi = 0

7. if 〈MMU � 〉i+1 = 〈MMU � 〉i then TOTµ
i+1 = TOTµ

i − IS_µi+1;
4i.e. OFF + SIZE ≥ RDS
5i.e. SIZE > 24576
6We will want provide a byte decomposition for the quotient of the euclidean division of a 129 bit integer by 16, so

the result fits into 16 bytes.

48

In other words, during the precomputation phase TOTµ remains constant and in the micro-instruction
writing phase it decreases by one with every row. The first part we already imposed (when asking that
TOTµ be established during precomputation) but the second part is new.

8. if
(

IS_µi = 1 and TOTµ
i 6= 0

)
then IS_µi+1 = 1;

9. if
(
〈MMU � 〉i 6= 0 and TOTµ

i = 0
)

then 〈MMU � 〉i+1 = 1 + 〈MMU � 〉i

We can also settle the behaviour of µINSTRUCTION_STAMP:

10. ∀i, µINST�i+1 = µINST�i + IS_µi+1

It is similar to TOTµ in that it is (technically) established during precomputation but there is no
actual establishing happening: µINST� just grows monotonically with every row counting the micro-
instructions. There is no resetting it in the trace.

The following illustrates the desired behaviour of these columns:

2.2.6 Byte decomposition constraints
The various byte, prefix and quotient columns satisfy byte decomposition contraints. The constraints
below apply for all k ∈ {1, 2, . . . , 8}:

1. if IS_µi = 0 then

(a) if CTi = 0 then ACC_ki = BYTE_ki;
(b) if CTi 6= 0 then ACC_ki = 256 · ACC_ki−1 + BYTE_ki

In other words, the ACC_k accumulate bytes during the preprocessing phase (which is characterized
by IS_µi = 0). What happens outside of that phase is unspecified.

2.2.7 Data organization

49

〈MMU � 〉 OFF_OOB CT IS_µ TOTµ µINST�
0 0 0 0 0 0
...

...
...

...
...

...
0 0 0 0 0 0

1 1 0 0 33 0
...

...

Figure 2.1: The above represents the first few rows of the heartbeat columns. 0 padding is on display.
There is at least one macro RAM instruction: it raises the OFF_OOB flag and hence might for instance
be a code copying instruction or an instruction touching call data. This single RAM macro instruction
is converted into 33 (!) micro-instructions. This rules out CALLDATALOAD.

〈MMU � 〉 OFF_OOB CT IS_µ TOTµ µINST�

...
...

r− 1 off_oob 0 1 0 µ

r 1 0 0 7 µ
r 1 1 0 7 µ
...

...
...

...
...

...
r 1 15 0 7 µ
r 1 0 1 6 µ+ 1
r 1 0 1 5 µ+ 2
...

...
...

...
...

...
r 1 0 1 1 µ+ 6
r 1 0 1 0 µ+ 7

r + 1 off_oob' 0 0 tot' µ+ 7

〈MMU � 〉 OFF_OOB CT IS_µ TOTµ µINST�

...
...

s− 1 off_oob'' 0 1 0 ν

s 0 0 0 83 ν
s 0 1 0 83 ν
...

...
...

...
...

...
s 0 2 0 83 ν
s 0 0 1 82 ν + 1
s 0 0 1 81 ν + 2
...

...
...

...
...

...
s 0 0 1 1 ν + 82
s 0 0 1 0 ν + 83

s + 1 off_oob''' 0 0 tot''' ν + 83

Figure 2.2: Left hand side. The r-th macro-instruction decomposes into 7 micro-instructions. The
corresponding rows have IS_MICRO_INSTRUCTION = 1 (see green cells.) It also raises the OFF_OOB
flag so that the precomputation phase lasts 16 rows. When entering this macro instruction the RAM
offset processor had already written µ micro-instructions.

Right hand side. The s-th macro-instruction decomposes into 83 (!) micro-instructions. The corre-
sponding rows have IS_MICRO_INSTRUCTION = 1 (see green cells.) It doesn’t raise the OFF_OOB
flag so that the precomputation phase lasts only 3 rows. When entering this macro instuction the
RAM offset processor had already produced ν individual micro-instructions.

50

〈INST〉 CN_S CN_T 〈〈REFO〉〉 〈〈REFS〉〉 〈OFF1〉 〈OFF2〉 〈SIZE〉 〈VAL hi〉〈VAL lo〉 INFO 〈#〉 ♦PRE

MLOAD 〈CN〉 OFF loaded value 1

MSTORE 〈CN〉 OFF value to store 1

MSTORE8 〈CN〉 OFF value to store 1

REVERT 〈CN〉 〈CALLER〉 R@O R@C OFF SIZE 〈CTYPE〉 = 0 2

RETURN 〈CN〉 〈CALLER〉 R@O R@C OFF SIZE 〈CTYPE〉 = 0 2

RETURN 〈CN〉 OFF SIZE BC_ADDR (†) 〈CTYPE〉 = 1 DEP# 3

CREATE 〈CN〉 OFF SIZE DEP_ADDR DEP# 3

CREATE2 〈CN〉 OFF SIZE DEP_ADDR DEP# 3

LOGX 〈CN〉 OFF SIZE LOG# 3

SHA3 〈CN〉 OFF SIZE SHA# 3

CODECOPY 〈CN〉 CODESIZE T_OFF S_OFF SIZE BC_ADDR (†) 〈CTYPE〉 DEP# 4CC

EXTCODECOPY 〈CN〉 CODESIZE (‡) T_OFF S_OFF SIZE ADDR DEP# 4CC

CALLDATACOPY 〈CALLER〉 〈CN〉 CDO CDS T_OFF S_OFF SIZE [CSD == 1] TX# 4CD

RETURNDATACOPY 〈RETURNER〉 〈CN〉 RDO RDS T_OFF S_OFF SIZE 4RD

CALLDATALOAD 〈CN〉 CDO CDS OFF loaded value [CSD == 1] TX# 5

Figure 2.3: Some comments: the columns 〈OFF1〉, 〈OFF2〉, 〈SIZE〉, 〈VAL hi〉 and 〈VAL lo〉 are imported from stack, they contain respectively
1VAL lo, 2VAL lo, 3VAL lo, 4VAL hi and 4VAL lo. Recall, at this point, the discussion around CODECOPY and RETURN’s mostly empty fourth
stack item. The relevant cells are signaled with a (†). Note that the CODESIZE argument of the EXTCODECOPY (i.e. the cell with (‡))
is in reality unknown to the execution context. It will be verified in the data processing module where we import from the ROM module the
correct code size.

51

2.3 Combinatorics of overlapping intervals
2.3.1 Purpose
The purpose of the present section is to introduce the sorts of checks that the zk-evm carries out during
offset processing. The question is entirely about the ways in which (integer) intervals may overlap with
one another.

2.3.2 Data
The arithmetization we propose accesses data in aggregate form (i.e. as 16 byte integers) rather than
on a byte by byte basis. In order to perform data operations on the byte level the zk-evm procedes
with all sorts of byte slicing and recomposition operations. We provide further details about these
so-called transplants and surgeries in the RAM data processor chapter. The present module is
not equipped to carry these out. What it does is decompose single RAM instructions (which we dub
macro-instructions) into a series of smaller micro-instructions which the data processor knows
how to process. This preliminary reduction of macro-instructions into sequences of micro-instructions
requires dealing with questions related to limb offsets and byte offsets. The basic definition is that
the limb offset LO and byte offset BO of an offset OFFSET ∈ {0, 1, 2, . . . } are the quotient and
remainder, respectively, of the euclidean division of OFFSET by 16:{

OFFSET = 16 · LO + BO,
BO ∈ {0, 1, . . . , 15}

While the RAM data processor can access various “data tracks”, all of them work with limbs. The RAM
preprocessor thus always works with limb offsets, byte offsets and their combinatorics — regardless of
the (macro-)instruction it is tasked with processing. It may at times also set exogenous data flags to
indicate to the data processor from where to pull exogenous data. We will deal with this directly in
the constraints.

Data transfers from a source data track to a target data track usually follow the following pattern:

1. Relevant source limbs are only read once: all required bytes are extracted in one micro-instruction
at which point the zk-evm moves on to the next source limb or to the next macro-instruction;

2. Target limbs may get written to once or twice depending on several factors such as: are offsets
aligned? Will this particular target limb contain both data and (zero) padding?

One of the first questions the RAM preprocessor must answer is therefore that of
Question 1. How many limbs of data will be accessed in the source?

This number obviously contributes to TOTAL_NUMBER_OF_MICRO_INSTRUCTIONS column
which establishes the total number of micro-instructions that the pre-processor writes for the RAM
data processor to perform. The largest offset touched when reading SIZE many bytes starting at offset
OFFSET is OFFSET + (SIZE− 1). Thus, setting

16 · LO_1 + BO_1 = OFFSET
16 · LO_2 + BO_2 = OFFSET + (SIZE− 1)

BO_1,BO_2 ∈ {0, 1, . . . , 15}

The total number of source limbs to access is LO_2− LO_1 + 1 .
The first micro-instruction may involve extracting a suffix from the first touched limb or extracting

a chunk of (consecutive) bytes from the middle of the limb if only one limb is touched. That chunk
of bytes may fit into a single target limb or straddle two consecutive ones. Deciding on which is the
case is required to settle the nature of the first micro-instruction and, in case TOTµ ≥ 2, the final
micro-instruction as well as any transition micro-instructions. Transitions occur when the zk-evm
moves from data writing to zero padding.

52

Figure 2.4: The data slice touches a single limb. The limb represented above is the LOth limb and the
first byte the micro-instruction will access is that at index BO within the limb. In the present situation
LO_2 = LO_1 and so the macro-instruction accesses a single source limb.

Figure 2.5: The data slice touches several limbs. In the present situation LO_2 > LO_1 and so the
macro-instruction accesses at least 2 source limbs.

Figure 2.6: The data slice touches a single limb.

Question 2. How to determine in a constraints whether writing SIZE bytes starting at offset OFFSET
requires writing one or two limbs in the target?

To answer the question we define an “answer bit” [[ans.]] which equals 1 if writing overlaps two

53

Figure 2.7: The data slice touches several limbs.

limbs and 0 if only one target limb is involved. This bit is constrained as below:{
[[ans.]] = 1 ⇐⇒ BO_2 + (SIZE− 1) > 15

[[ans.]] = 0 ⇐⇒ BO_2 + (SIZE− 1) ≤ 15

which is equivalent to the constraint(
2 · [[ans.]]− 1

)
·
(
BO_2 + (SIZE− 1)− 15

)
− [[ans.]] = nibble

Where nibble is a column constrained to take values in the range {0, 1, . . . , 15}. This sort of constraint
plays a prominent role in what follows. The constraint part is two fold: the equation per se and the
range constraint on the nibble column.

Figure 2.8: The above represents 3 consecutive micro-instructions. The first one is the final data
writing step; it touches a single target limb. The second one pads the same target limb; thus at
the step where the zk-evm transitions from data writing to zero padding the target limb offsets isn’t
updated. The nex step is just zero padding a limb.

54

Figure 2.9: The above represents 2 consecutive micro-instructions. The first one is the final data
writing step; this time it touches two target limbs. The second micro-instruction pads the next target
limb; thus at the step where the zk-evm transitions from data writing to zero padding the target limb
offsets is updated.

2.4 Constraints
2.4.1 Parametrized instruction decoding, preprocessing and constraints
Instruction decoding in the RAM offset processor is more involved than elsewhere. This is because:

1. it fufills different purposes in the preprocessing phase and in the micro-instruction writing phase;

2. in either phase the zk-evm does parametrized instruction decoding.

One of the purposes of the precomputation phase (characterized by IS_µ = 0) is to produce a series of
binary flags. How many of these binary flags are to be computed as well as the procdedure by which they
are to be computed (among other things) can be read off the instruction decoded ♦PRECOMPUTATION
parameter. Examples of such flags include the ALIGNED flag which tells the RAM data processor
whether certain memory operations can be done without any byte decompositions (ALIGNED = 0
means the micro-instruction will be a type of limb surgery, ALIGNED = 1 means the micro-instruction
will be a type of transplant.)

Once these binary flags are set and justified at the end of the preprocessing phase, the current
opcode and these flags considered as a whole are understood as a parametrized instruction. In the
micro-instruction writing phase (characterized by IS_µ = 1) it is parametrized instructions that are
instruction decoded in a process we dub parametrized instruction decoding7 . This allows for the
second phase of micro-instruction writing to produce the adequate sequence of micro-instructions.

Thus the workflow is as follows:

1. upon entering a new macro instruction the IS_µ flag is set to 0 and stays = 0 for either 3 or 16
rows;

2. the instruction and IS_µ = 0 are instruction decoded8; this is mostly about retrieving the
precomputation type ♦PRECOMPUTATION;

3. the offset preprocessor executes the preprocessing associated with the precomputation type;
7This is technically also true of the preprocessing phase, though simpler: code copying instructions and call data

instructions may have offsets that drastically go out of bounds which will alter the precomputation and the resulting
sequence of micro instructions; the behaviour of RETURN depends on whether the current execution context is a deployment
context or not. Thus instructions are decorated by two binary flags OFF_OOB and CTYPE that affect their instruction
decoding in the preprocessing phase.

8An info bit can be part of the picture too; either 〈CTYPE〉 or [CSD = 0]

55

4. this produces a number of parameters and binary flags;

5. when the precomputation phase comes to an end IS_µ switches to 1;

6. the instruction and IS_µ = 1 and the flags that were just produced now form a parametrized
instruction;

7. this parametrized instruction is instruction decoded until TOTµ hits zero;

8. in that time the parameters may change and lead to changes the decoded µINST;

This produces a sequence of micro-instructions. These micro-instructions are imported by the RAM
data processor where each of these requests is honored in order of production.

2.4.2 Setting the FAST flag
In the following sections we detail how the offset preprocessor breaks RAM maxro-instructions down
into a sequence of RAM micro-instructions. Micro-instructions are either transplants (i.e. fast oper-
ations i.e. operations requiring not byte decomposition to perform) or surgeries (i.e. slow operations
i.e. operations that require the RAM data processor to carry out one or more byte decompositions.)
Thus the FAST flag depends purely on the micro-instruction. It will be set without further comment
on every row where IS_µ = 1 according to the following:

Micro-instructions with FAST = 1: —

1. RamToRam
2. ExoToRam
3. RamIsExo
4. KillingOne
5. KillingTwo

6. KillingThree
7. PushTwoRamToStack
8. PushOneRamToStack
9. PushTwoStackToRam
10. StoreXinAoneRequired

11. StoreXinAtwoRequired

12. StoreXinAthreeRequired

13. StoreXinB

14. StoreXinC

Micro-instructions with FAST = 0: —

1. RamLimbExcision ,
2. RamToRamSlideChunk ,
3. RamToRamSlideOverlappingChunk ,
4. ExoToRamSlideChunk ,
5. ExoToRamSlideOverlappingChunk ,
6. PaddedExoFromOne ,
7. PaddedExoFromTwo ,
8. FullExoFromTwo ,
9. FullStackToRAM ,
10. ByteSwap ,

11. LsbFromStackToRAM ,
12. FirstFastSecondPadded ,
13. FirstPaddedSecondZero ,
14. Exceptional_RamToStack_3To2Full ,
15. NA_RamToStack_3To2Full ,
16. NA_RamToStack_3To2Padded ,
17. NA_RamToStack_2To2Padded ,
18. NA_RamToStack_2To1FullAndZero ,
19. NA_RamToStack_2To1PaddedAndZero ,
20. NA_RamToStack_1To1PaddedAndZero ,

(on rows where IS_µ = 0 one may set FAST to 0)

2.4.3 Type 1
Instructions

The following instructions follow type 1 precomputation:

56

INST IS_µ ALIGNED ♦TO_RAM ♦PRE µINST

MLOAD 0 0 1

MSTORE 0 1 1

MSTORE8 0 1 1

MLOAD 1 0 0 1 NA_RamToStack_3To2Full

MLOAD 1 1 0 1 PushTwoRamToStack

MSTORE 1 0 1 1 FullStackToRAM

MSTORE 1 1 1 1 PushTwoStackToRam

MSTORE8 1 1 1 LsbFromStackToRAM

1. MLOAD 2. MSTORE 3. MSTORE8

Note that CALLDATALOAD, while similar (at a first glance) to MLOAD, follows a different, more complex,
precomputation type. We will expand as to why in due time.

Workflow

For instructions with ♦PRE = 1 the precomputation consists in

1. setting and verifying the quotient and remainder of the euclidean division of 〈OFF1〉 by 16,

2. setting the ALIGNED flag to 1 if the remainder of said euclidean division is 0.

Note that the ALIGNED flag will be ignored by the MSTORE8 instruction.
The RAM data processor deals with MSTORE8 instructions in a uniform way: there are no fast

MSTORE8 instructions, i.e. every MSTORE8 translates to a surgery micro instruction in the RAM data
processor. Parametrized instruction decoding for MSTORE8 thus coincides with standard instruction
decoding: every MSTORE8 instruction gives rise to a LsbFromStackToRAM micro instruction in the
RAM data processor.

MLOAD and MSTORE instructions, on the other hand, can give rise to either fast micro instructions
or slow micro instructions. The parametrized instruction decoding of MLOAD and MSTORE thus depends
on a single binary flag, ALIGNED, that lights up precisely when 〈OFF1〉 is a clean multiple of 16.
Thus MLOAD translates to the transplant PushTwoRamToStack when ALIGNED = 1 and to the surgery
[3⇒ 2 Full] when ALIGNED = 0. Similarly MSTORE translates to the transplant PushTwoStackToRam
when ALIGNED = 1 and to the surgery [2 Full⇒ 3] when ALIGNED = 0.

Parametrized instruction decoder

The relevant portion of the parametrized instruction decoder looks like so:

Preprocessing

We collect under the moniker Type_1 the following collection of constraints. We jump straight to the
last preprocessing step:

All constraints in this subsection assume IS_µi = 0 and IS_µi+1 = 1

57

1. OFF_OOBi = 0;

Indeed, 〈OFF1〉i already went through the Memory Expansion Module where it was tested for smallness.

2. We fix the source and target context according to the ♦TO_RAMi flag:

(a) if ♦TO_RAMi = 0 then {
CN_Si = 〈CN〉i
CN_Ti = 0

(b) if ♦TO_RAMi = 1 then {
CN_Si = 0

CN_Ti = 〈CN〉i

In other words, MSTORE and MSTORE8 have target context equal to the current context (CN_Ti =
〈CN〉i) and MLOAD has source context equal to the current context (CN_Si = 〈CN〉i). The other
context is zero in both cases.
We can of course subsume the above in the constraints CN_Si = (1 − ♦TO_RAMi) · 〈CN〉i and
CN_Ti =

♦TO_RAMi · 〈CN〉i.

3. 〈OFF1〉i = 16 · ACC_1i + NIB_1i;

4. we set the source and target limb and byte offsets:

(a) if ♦TO_RAMi = 0 then 
SLOi+1 = SLOi = ACC_1i
SBOi+1 = SBOi = NIB_1i
TLOi+1 = TLOi = 0

TBOi+1 = TBOi = 0

(b) if ♦TO_RAMi = 1 then 
SLOi+1 = SLOi = 0

SBOi+1 = SBOi = 0

TLOi+1 = TLOi = ACC_1i
TBOi+1 = TBOi = NIB_1i

Again we can subsume the previous constraints in a linear combination as before.

5. Set the fast operation flag: {
if NIB_1i = 0 then ALIGNEDi = 1,

if NIB_1i 6= 0 then ALIGNEDi = 0;

6. TOTµ
i = 1: an MLOAD, MSTORE or MSTORE8 is dealt with by the RAM data processor in one micro

instruction;

Micro-instruction writing

All constraints in this subsection assume IS_µi = 1

1. The source and target limb were already set.

58

2. if ALIGNEDi = 1 then{
if ♦TO_RAMi = 0 then µINSTi = PushTwoRamToStack
if

(
♦TO_RAMi = 1 and 〈INST〉i = MSTORE

)
then µINSTi = PushTwoStackToRam

3. if ALIGNEDi = 0 then{
if ♦TO_RAMi = 0 then µINSTi = NA_RamToStack_3To2Full
if

(
♦TO_RAMi = 1 and 〈INST〉i = MSTORE

)
then µINSTi = FullStackToRAM

4. if 〈INST〉i = MSTORE8 then µINSTi = LsbFromStackToRAM

2.4.4 Type 2
Instructions

The following instructions follow type 3 precomputation:

1. RETURN in a non deployment context 2. REVERT

Workflow

The precomputation phase of type 2 is involved. It requires computing a number of euclidean divisions
and doing a few comparisons. Here is the general overview of the computation:

1. The preprocessor first determines the “real size” of data to be moved, i.e. the minimum

MIN := min{〈SIZE〉, 〈R@C〉}

Indeed, when returning or reverting successfully, the current execution context writes as much
of its return data to its parent context as the parent context permits; the “as much as possible”
part of that statement is captured by the minimun.

2. It then determines the euclidean divisions
〈OFF1〉 = 16 · ACC_1 + NIB_1,
〈OFF1〉+ (MIN− 1) = 16 · ACC_2 + NIB_2,
〈R@O〉 = 16 · ACC_3 + NIB_3,
〈R@O〉+ (MIN− 1) = 16 · ACC_4 + NIB_4.

Note that all these integers have previously been checked for smallness (i.e. they fit into 3 bytes)
by the Memory Expansion Module; we know that proving these euclidean divisions will require
only byte decompositions of (what are a priori known to be) three byte integers ACC_1, ACC_2,
ACC_3 and ACC_4. Note, too, that instructions with zero size will be filtered out before reaching
the preprocessor.

3. The current macro-instruction is broken down into TOTµ = ACC_2−ACC_1+1micro-instructions;
there are several execution paths ahead:

(a) ACC_2 = ACC_1 i.e. TOTµ = 1 means that the bytes to write to the caller RAM live in a
single limb of the current execution context; a single surgery will suffice;

(b) ACC_2 = ACC_1 + 1 i.e. TOTµ = 2 means that the bytes to write to the caller RAM live
in two contiguous RAM limbs of the current execution context;

59

(c) ACC_2 ≥ ACC_1 + 2 i.e. i.e. TOTµ ≥ 3 means that the bytes to write to the caller RAM
live in at least 3 contiguous RAM limbs; the first and last of these may only be partially
copied to their destination, but ACC_2− (ACC_1+1) = TOTµ− 2 ≥ 1 will fully carry over
to the caller RAM;

The sequence of micro-instructions into which the macro-instruction decomposes reflects this
structure:

(a) In the first case a single surgery will suffice; this surgery may span one or two (neighboring)
limbs in the target context (i.e. the caller context); determining which surgery applies
requires us to figure out which of the following holds:

NIB_3 > NIB_1 ? or NIB_3 ≤ NIB_1 ?

In the first case a chunk of consecutive bytes from the source limb will be split and made
to replace a suffix and a prefix of two neighboring limbs in the caller RAM. In the second
case a chunk of consecutive bytes in the source limb will replace a chunk of bytes in a limb
of the caller RAM.

(b) In the second case two surgeries are enough; again there are various possibilities for these
surgeries; the previous discussion applies, but we now also have to consider the second limb,
a prefix of which will replace either (a chunk of consecutive bytes of a single limb in the
caller RAM) or a suffix and a prefix of two consecutive limbs in the caller RAM; determining
which surgery applies requires to answer dual question:

NIB_4 < NIB_2 ? or NIB_4 ≥ NIB_2 ?

(c) In the third case the initial surgery (which follows the logic laid out in part earlier) is
followed by TOTµ − 2 ≥ 1 full writes which in turn is followed by a final surgery (which
follows the logic laid out in part earlier).

4. Note that in the third case we can further distinguish between fast operations and slow ones.
The ACC_2− (ACC_1+1) full writes will be fast if NIB_1 = NIB_3, otherwise they will be slow.

Note that the arithmetization treats the second and third case on equal footing.

Parametrized instruction decoder

The relevant portion of the parametrized instruction decoder looks like so:

Figure 2.10

Context constraints

We collect under the moniker Type_2 the following collection of constraints:

1. We fix the source and target context:{
CN_Si = 〈CN〉i
CN_Ti = 〈CALLER〉i

2. OFF_OOBi = 0;

60

Let us expand on this constraint. Before entering the RAM preprocessor the offset and size parameters
of the RETURN/REVERT instruction underwent analysis in the Memory Expansion Module where they
were tested for smallness. We therefore know that both of them are small (i.e. fit into 3 bytes). Their
sum fits into 3 ∗ 8 + 1 bits and the quotient of the euclidean division by 16 of these integers fit into 3
bytes (and the remainders are nibbles.) This allows us to set, a priori, OFF_OOBi = 0.

Preprocessing

We jump straight to the last preprocessing step:

All constraints in this subsection assume IS_µi = 0 and IS_µi+1 = 1

Euclidean divisions. ACC_1, ACC_2, ACC_3 and ACC_4 target quotients of certain euclidean di-
visions and NIB_1, NIB_2, NIB_3 and NIB_4 target the associated remainders:

〈OFF1〉i = 16 · ACC_1i + NIB_1i
〈OFF1〉i + (MINi − 1) = 16 · ACC_2i + NIB_2i
〈R@O〉i = 16 · ACC_3i + NIB_3i
〈R@O〉i + (MINi − 1) = 16 · ACC_4i + NIB_4i

(The value of MINi is set below.) Note that we don’t “use” ACC_2i or ACC_4i per se; they exist
purely to justify the associated nibbles NIB_2i and NIB_4i.

Comparisons. We justify the three bit columns [[1]], [[2]] and [[3]] and the fifth accumulator column
ACC_5: 

(
〈R@C〉i − 〈SIZE〉i

)
·
(
2 · [[1]]i − 1

)
− [[1]]i = ACC_5i(

NIB_3i − NIB_1i
)
·
(
2 · [[2]]i − 1

)
− [[2]]i = NIB_5i(

NIB_2i − NIB_4i
)
·
(
2 · [[3]]i − 1

)
− [[3]]i = NIB_6i

Thus  [[1]] = 1 ⇐⇒ 〈R@C〉 > 〈SIZE〉
[[2]] = 1 ⇐⇒ NIB_3 > NIB_1
[[3]] = 1 ⇐⇒ NIB_2 > NIB_4

Note that NIB_5 and NIB_6 don’t play a functional role in type 2 instructions. Their sole
purpose is in establishing [[2]] and [[3]].

Establishing minimum. We set the minimum MIN := min{〈SIZE〉, 〈R@C〉}:

MINi = [[1]]i · 〈SIZE〉i + [[1]]∨i · 〈R@C〉i.

(Recall our standing convention of writing [[k]]∨ := (1− [[k]]).)

Workflow parameters. We establish the TOTAL_NUMBER_OF_MICRO_INSTRUCTIONS:

TOTµ
i = ACC_2i − ACC_1i + 1

and [[4]] which purely measures whether TOTµ
i = 1 or TOTµ

i > 1:{
if TOTµ

i = 1 then [[4]]i = 1
if TOTµ

i 6= 1 then [[4]]i = 0

We now establish [[5]]i. This bit only matters when TOTµ
i = 1 i.e. [[4]] = 1. [[5]] decides which

operation to perform when NIB_3 > NIB_1 (i.e. [[2]]i = 1)

1. if [[4]]i = 0 then [[5]]i = 0

61

2. if [[4]]i = 1 then
NIB_3 + (MINi − 1)− 16 · [[5]]i = NIB_7i

Note that NIB_7 doesn’t play a functional role in type 2 instructions. Its sole purpose is in
establishing [[5]].
We give more details. Assume [[4]]i = 1 i.e. one micro-instruction is enough. If NIB_3 ≤ NIB_1
the single operation is necessarily a RamToRamSlideChunk. But if NIB_3 > NIB_1 it could either
be a RamToRamSlideChunk or a RamToRamSlideOverlappingChunk. The second case happens iff
NIB_3 + (MINi − 1) ≥ 16 i.e. [[5]]i = 1 We set the fast operation flag:{

if NIB_1i = NIB_3i then ALIGNEDi = 1
if NIB_1i 6= NIB_3i then ALIGNEDi = 0

We establish the source and target limb and byte offsets:
SLOi+1 = SLOi = ACC_1i
SBOi+1 = SBOi = NIB_1i
TLOi+1 = TLOi = ACC_3i
TBOi+1 = TBOi = NIB_3i

Micro-instruction writing

We distinguish several cases. Note that

All constraints in this subsection assume IS_µi = 1

1. SLOi = SLOi−1 + IS_µi−1: the source limb offset grows by 1 with every instruction, regardless
of anything else;

2. if [[4]]i = 1 then

(a) SLOi and SBOi are already set
(b) TLOi and TBOi are already set
(c) SIZEi = MINi

(d) if [[2]]i = 0 then µINSTi = RamToRamSlideChunk

(e) if [[2]]i = 1 then{
if [[5]]i = 0 then µINSTi = RamToRamSlideChunk
if [[5]]i = 1 then µINSTi = RamToRamSlideOverlappingChunk

Recall that the case [[4]]i = 1 corresponds to a the single surgery, so this single constraint is
sufficient.

3. if [[4]]i = 0 there are most steps but they are less cramped. We start with TLO:

(a) if IS_µi−1 = 0 then
TLOi+1 = TLOi + (ALIGNEDi + [[2]]i)

Note that ALIGNEDi + [[2]]i = 1 ⇐⇒ NIB_3 ≥ NIB_1
(b) if IS_µi−1 = IS_µi = IS_µi+1 = 1 then

TLOi+1 = TLOi + 1

Note that the middle condition IS_µi = 1 is redundant;

62

The previous two columns signify that if NIB_3 ≥ NIB_2 then TLOi grows by one with every
micro instruction. However when NIB_3 < NIB_2 the first limb in the target is modified by two
successive micro-instructions. This is captured by the above constraints.

(c) if IS_µi−1 = 0

i. SIZEi = (15− NIB_1i) + 1

ii. if [[2]]i = 0 then µINSTi = RamToRamSlideChunk
iii. if [[2]]i = 1 then µINSTi = RamToRamSlideOverlappingChunk

(d) if IS_µi−1 = 1 then
i. SBOi = 0

ii. TBOi = NIB_3i + 16− NIB_1i − 16 · (ALIGNEDi + [[2]]i)
Note that by construction, for type 2 instructions, ALIGNEDi and [[2]]i measure disjiont
events, so that ALIGNEDi + [[2]] = ALIGNEDi + [[2]]− ALIGNEDi · [[2]] = ALIGNEDi ∨ [[2]]
is a binary column and its interpretation is ALIGNEDi+[[2]] = 1 ⇐⇒ NIB_1 ≤ NIB_3.

iii. if TOTµ
i 6= 0 then

A. SIZEi = 16

B. if ALIGNEDi = 1 then µINSTi = RamToRam
C. if ALIGNEDi = 0 then µINSTi = RamToRamSlideOverlappingChunk

iv. if TOTµ
i = 0 then

A. SIZEi = NIB_2i + 1

B. if [[3]]i = 0 then µINSTi = RamToRamSlideChunk
C. if [[3]]i = 1 then µINSTi = RamToRamSlideOverlappingChunk

2.4.5 Type 3
Instructions

The following instructions follow type 3 precomputation:

1. SHA3

2. LOG0-LOG4

3. CREATE and CREATE2

4. RETURN in a deployment context

Workflow

Parametrized instruction decoder

The relevant portion of the parametrized instruction decoder looks like so:

Context constraints

We fix some context information: We collect under the moniker Type_3 the following collection of
constraints:

1. source and target contexts: {
CN_Si = 〈CN〉i
CN_Ti = 0

2. OFF_OOBi = 0;
Let us expand on this constraint. Just as with Type_1, 〈OFF1〉i already went through the Memory
Expansion Module where it was tested for smallness. The computation also tested 〈SIZE〉i for smallness.
Thus arriving into the present module we know that both of them are small (i.e. fit into 3 bytes) and
so their sum fits into 3 ∗ 8+ 1 bits and the quotient of the euclidean division by 16 of these integers fit
into 3 bytes (and the remainders are nibbles.)

63

INST IS_µ [[1]] [[2]] ALIGNED INFO ♦X_SHA3 ♦X_LOG ♦X_ROM ♦PRE µINST

SHA3 0 1 0 0 3

LOGX 0 0 1 0 3

CREATE 0 0 0 1 3

CREATE2 0 1 0 1 3

RETURN 0 1 0 0 1 3

1 0 0 0 FullExoFromTwo

same as 1 0 0 1 same same same same 3 RamIsExo

above 1 1 0 PaddedExoFromOne

1 1 1 PaddedExoFromTwo

Figure 2.11: The ♦X_ROM, ♦X_LOG and ♦X_SHA3 columns take the same value in the IS_µ = 1
case as in the IS_µ = 0 case. The [[1]] column records whether the current micro instruction is forms a
full word of exogenous data or a padded one. The [[2]] column records, in case where the 〈SIZE〉 isn’t a
clean multiple of 16, the kind of final micro-instruction that will take place: either we form a padded
limb of exogenous data using one limb from RAM or we form one padded limb of exogenous data using
two limbs from RAM.

Preprocessing

We jump straight to the last preprocessing step, i.e. constraints below are under the assumption

IS_µi = 0 and IS_µi+1 = 1

Euclidean divisions. ACC_1, ACC_2 target the quotients of certain euclidean divisions and NIB_1,
NIB_2 target the associated remainders:{

〈OFF1〉i = 16 · ACC_1i + NIB_1i
〈SIZE〉i = 16 · ACC_2i + NIB_2i

Fast operation. We set {
if NIB_1i = 0 then ALIGNEDi = 1
if NIB_1i 6= 0 then ALIGNEDi = 0

Special final micro-instruction. We set{
if NIB_2i = 0 then [[1]]i = 0
if NIB_2i 6= 0 then [[1]]i = 1

There is a final operation with padding if the SIZE isn’t a clean multiple of 16. The [[1]] flag
detects it.

Nature of final micro-instruction. In case there is a special final instruction [[2]] will distinguish
between the two possibilities:

1. if ALIGNEDi = 1 then [[2]]i = 0;

64

2. if ALIGNEDi = 0 then

NIB_1i + (NIB_2i − 1)− 16 · [[2]]i = NIB_3i

Subsuming the previous discussion:

ALIGNED = 1 ⇐⇒ 〈OFF1〉 is a clean multiple of 16

[[1]] = 1 ⇐⇒ there’s a special final operation
⇐⇒ 〈SIZE〉 isn’t a clean multiple of 16

[[2]] = 1 ⇐⇒ NIB_1i + (NIB_2i − 1) ≥ 16

Workflow parameters. We establish the TOTAL_NUMBER_OF_MICRO_INSTRUCTIONS:

TOTµ
i = ACC_2i + [[1]]i

We establish the initial source and target limb and byte offsets:
SLOi = ACC_1i
SBOi = NIB_1i

TLOi = 0
TBOi = 0

Constraints

All constraints in this subsection assume

IS_µi = 1

1. the source and target limb and byte offsets change very predictably:
SLOi = SLOi−1 + IS_µi−1

SBOi = NIB_1i

TLOi = TLOi−1 + IS_µi−1

TBOi = 0

2. if TOTµ
i 6= 0 then

(a) if ALIGNEDi = 1 then µINSTi = RamIsExo
(b) if ALIGNEDi = 0 then µINSTi = FullExoFromTwo

3. if TOTµ
i = 0 then

(a) if
(

ALIGNEDi = 1 and [[1]]i = 0
)

then µINSTi = RamIsExo

(b) if
(

ALIGNEDi 6= 1 or [[1]]i 6= 0
)

i. SIZEi = NIB_2i then
ii. if [[2]]i = 0 then µINSTi = PaddedExoFromOne
iii. if [[2]]i = 1 then µINSTi = PaddedExoFromTwo

2.4.6 Type 4
Instructions

The following instructions follow Type 4 precomputation:

65

1. CALLDATACOPY

2. RETURNDATACOPY

3. CODECOPY

4. EXTCODECOPY

Type 4 instructions have subtle differences between themselves. We thus further subdivide the type
into 3 subtypes:

INST ♦PRE
CODECOPY type4CC
EXTCODECOPY type4CC
CALLDATACOPY type4CD
RETURNDATACOPY type4RD

Context

We collect under the moniker Type_4 the following collection of constraints (which will further depend
on the ternary column TERN). It starts with setting source and target context numbers:

1. We fix the target context, it is the current execution context: CN_Ti = 〈CN〉i;

2. The source context and exodata flags depend on the instruction:

(a) if ♦PRE = type4RD then CN_Si = 〈RETURNER〉i and
X_SHA3i = 0
X_LOGi = 0
X_ROMi = 0
X_TXCDi = 0

(b) if 〈INST〉i = CALLDATACOPY then CN_Si = 〈CALLER〉i and
X_SHA3i = 0
X_LOGi = 0
X_ROMi = 0

X_TXCD :

{
if IS_µi = 1 and TOTRDi−1 6= 0 then X_TXCDi = 〈INFO〉
if IS_µi = 0 or TOTRDi−1 = 0 then X_TXCDi = 0

Recall that we distinguish between transaction call data and call data created in CALL-type
instructions.

(c) if 〈INST〉i = CODECOPY or 〈INST〉i = EXTCODECOPY then CN_Si = 0 and
X_SHA3i = 0
X_LOGi = 0

X_ROM :

{
if IS_µi = 1 and TOTRDi−1 6= 0 then X_ROMi = 1
if IS_µi = 0 or TOTRDi−1 = 0 then X_ROMi = 0

X_TXCDi = 0

3. OFF_OOBi is set along with TERNARYi

Along with CALLDATALOAD, the above are the only instructions that may set off the OFF_OOB flag.
As already expanded upon elsewhere, the “data source offset” 〈OFF2〉 of these instructions points
into bytecode or calldata (we deal with return data in the following paragraph). It may very well go
completely out of bounds and not provoke an exception. When it does, OFF_OOBi will be set.

The case where the “data source offset” points into return data is different: we test the fact that the
byte slice it points to is in bounds before the macro-instruction ever makes it to the RAM preprocessor.
Recall that out of bounds RETURNDATACOPY instructions raise an exception in the evm.

66

Establishing TERN

We establish the TERNARY column. Recall that it is a 〈MMU � 〉-constant column. Its value determines
the kinds of micro-instructions the macro-instruction is translated to. There are three cases to consider:

TERN = 0: 〈OFF2〉+ (〈SIZE〉 − 1) < 〈REFS〉: the instruction behaves like a type 3 instruction with a
caveat about the exodata source; there is no zero padding;

TERN = 1: 〈OFF2〉 < 〈REFS〉 ≤ 〈OFF2〉 + (〈SIZE〉 − 1): the instruction reads at least one byte from
its source and writes it to RAM; it follows it up by writing at least one 0 padding byte;

TERN = 2: 〈REFS〉 ≤ 〈OFF2〉: the instruction writes 〈SIZE〉 many zeros to memory, i.e. there is only
zero padding;

The trickiest case to arithmetize is TERN = 1. We go about establishing the value of TERN. We jump
straight to the last preprocessing instruction:

All constraints in this subsection assume IS_µi = 0 and IS_µi+1 = 1

1. if 〈OFF2〉 hi
i 6= 0 then {

TERNi = 2
OFF_OOBi = 1

〈OFF2〉 hi
i 6= 0 means that 〈OFF2〉 is grossly out of bounds.

2. if 〈OFF2〉 hi
i = 0 then

(a) if TERNi = 0 then {
OFF_OOBi = 0

〈REFS〉i − (〈OFF2〉 lo
i + 〈SIZE〉i) = ACC_1i

(b) if TERNi = 1 then
OFF_OOBi = 0

〈OFF2〉 lo
i + (〈SIZE〉i − 1)− 〈REFS〉i = ACC_1i
〈REFS〉i − (〈OFF2〉 lo

i + 1) = ACC_2i

(c) if TERNi = 2 then {
OFF_OOBi = 1

〈OFF2〉i − 〈REFS〉i = ACC_1i

Note that ACC_1i and ACC_2i don’t play a “functional role”, their sole purpose is in establishing
TERNi. Note furthermore that NIB_1 and NIB_2 remain unused at this point.

2.4.7 Type 4 when TERN = 0
Preprocessing

This is essentially a subcase of TERN = 1.

67

2.4.8 Type 4 when TERN = 1
Preprocessing

Type 4 instructions with TERN = 1 are the most complex to arithmetize. As usual, we jump straight
to the last preprocessing step, i.e.

All constraints in this subsection assume IS_µi = 0 and IS_µi+1 = 1

Note that in the present case (TERN = 1) preprocessing takes 3 lines. The integer whose bytes are
being accumulated are small (having passed smallness testing in the Memory Expansion Module or
by virtue of TERN = 1) i.e. they all fit into 3 bytes. Also notice that ACC_1 and ACC_2 are already
“used up”. In what follows we start with ACC_3, ACC_4, …

Euclidean divisions. ACC_3, …, ACC_8 target quotients of certain euclidean divisions and NIB_3,
…, NIB_8 target the associated remainders:

〈REFO〉i + 〈OFF2〉i = 16 · ACC_3i + NIB_3i
〈REFO〉i +

(
〈REFS〉i − 1

)
= 16 · ACC_4i + NIB_4i

〈OFF1〉i = 16 · ACC_5i + NIB_5i
〈OFF1〉i +

((
〈REFS〉i − 〈OFF2〉i

)
− 1

)
= 16 · ACC_6i + NIB_6i

〈OFF1〉i +
(
〈REFS〉i − 〈OFF2〉i

)
= 16 · ACC_7i + NIB_7i

〈OFF1〉i +
(
〈SIZE〉i − 1

)
= 16 · ACC_8i + NIB_8i

Note that ACC_7i and NIB_7i could easily deduced from ACC_6i and NIB_6i; we don’t do it
and resort to this generic way of establishing ACC_7i and NIB_7i to keep things simpler.

Comparisons. We justify the bit columns [[1]] and [[2]] and use up NIB_1 and NIB_2 in the process:{ (
NIB_5i − NIB_3i

)
·
(
2 · [[1]]i − 1

)
− [[1]]i = NIB_1i(

NIB_4i − NIB_6i
)
·
(
2 · [[2]]i − 1

)
− [[2]]i = NIB_2i

Thus {
[[1]] = 1 ⇐⇒ NIB_5 > NIB_3
[[2]] = 1 ⇐⇒ NIB_4 > NIB_6

Workflow parameters. We set the total number of micro-instructions:

TOTµ
i = (ACC_4i − ACC_3i) + 1

+(ACC_8i − ACC_7i) + 1

We also set the total number of instructions involving actual reads:

TOTRDi = (ACC_4i − ACC_3i) + 1

Let us also write, just this once,

TOTPDi = (ACC_8i − ACC_7i) + 1

We emphasize that we don’t need a dedicated TOTPD column , but it’s convenient to understand
the meaning of [[4]] below. The interpretation is straightforward: TOTPD is the number of target

68

RAM limbs that will be affected by 0 padding. We set some binary flags:

if NIB_3i = NIB_5i then ALIGNEDi = 1

if NIB_3i 6= NIB_5i then ALIGNEDi = 0

if TOTRDi = 1 then [[3]]i = 1

if TOTRDi 6= 1 then [[3]]i = 0

if TOTPDi = 1 then [[4]]i = 1

if TOTPDi 6= 1 then [[4]]i = 0

if NIB_6i = 15 then [[5]]i = 1

if NIB_6i 6= 15 then [[5]]i = 0

if NIB_8i = 15 then [[6]]i = 1

if NIB_8i 6= 15 then [[6]]i = 0

We also establish [[7]]. This plays an analoguous role for type 4 instructions as [[5]] played for type
2 instructions: in case of a single read (i.e. TOTRDi = 1 i.e. [[3]] = 1) it distinguishes between the
two writing methods. Either a source chunk is written to a suffix and prefix of two consecutive
target limbs (⇐⇒

(
NIB_5 +

(
NIB_4−NIB_3 + 1

)
− 1

)
≥ 16) or a source chunk is written to a

single target limb replacing a chunk thereing (⇐⇒
(
NIB_5 +

(
NIB_4− NIB_3 + 1

)
− 1

)
< 16)

1. if [[3]] = 0 then [[7]] = 0

2. if [[3]] = 1 then
NIB_5 +

(
NIB_4− NIB_3

)
− 16 · [[7]]i = NIB_9

In other words:

1. ALIGNED = 1 ⇐⇒ the data source and RAM target offsets are aligned;

2. [[3]] = 1 ⇐⇒ precisely one limb of call data, return data or bytecode is read;

3. [[4]] = 1 ⇐⇒ precisely one target RAM limb has to be zero padded;

4. [[5]] = 1 ⇐⇒ NIB_6 = 15 ⇐⇒ NIB_7 = 0 ⇐⇒ the first padding operation starts on a fresh
limb with a byte offset of 0;

5. [[6]] = 1 ⇐⇒ NIB_8 = 15 ⇐⇒ the final padding operation ends with a byte offset of 15;

Source and target limb and byte offsets We set source and target limb and byte offsets
SLOi+1 = SLOi = ACC_3i
SBOi+1 = SBOi = NIB_3i

TLOi+1 = TLOi = ACC_5i
TBOi+1 = TBOi = NIB_5i

Note that we don’t require source offsets: there is no source, we are simply writing zeros to the
target context’s RAM. Note furthermore that the constraint TLOi+1 = TLOi is implicit in the
upcoming set of constraints. We include it purely for the reader’s convenience.

69

Micro-instruction writing: updating TOTRD

We distinguish several cases. A complication arises from the fact that midway there is a regime change.
We initially read data and write the micro-instructions that will surgically insert the relevant data into
the target context’s RAM. This regime holds for as long as TOTRDi−1 6= 0. The regime change takes
place as we transition from row i0 to row i0 + 1 where i0 is the row index where TOTRD where hits
zero for the first time (within that 〈MMU � 〉). At that point the micro-instructions the zk-evm writes
switch from data extracting micro-instructions to zero padding micro-instructions. Note: we
don’t use the notation i0 anywhere else. The transition condition will be couched in terms of TOTRD

All constraints in this subsection assume IS_µi = 1

We begin by fixing the expected behaviour of TOTRD

1. if TOTRDi−1 6= 0 then TOTRDi = TOTRDi−1 − IS_µi−1

2. if TOTRDi−1 = 0 then TOTRDi = 0

In other words: for the first micro-instruction TOTRD duplicates the value that was established in
precomputation. Beyond that point it decreases monotonically by 1 with every micro-instruction until
it hits 0. We deal with the micro instructions in the first phase, i.e. reading actual data.

Micro-instruction writing: data extraction

All constraints in this subsection assume IS_µi = 1 and TOTRDi−1 6= 0

We begin with the case where there is a single “data writing” operation, i.e. [[3]]i = 1:

1. if [[3]]i = 1 then :

(a) SLOi and SBOi are already set;
(b) TLOi and TBOi are already set;
(c) SIZEi = NIB_4i − NIB_3i + 1;
(d) if [[1]]i = 0 then

if ♦PREi = type4CC then µINSTi = ExoToRamSlideChunk
if ♦PREi = type4RD then µINSTi = RamToRamSlideChunk

if ♦PREi = type4CD then

{
if 〈INFO〉 = 0 then µINSTi = RamToRamSlideChunk
if 〈INFO〉 = 1 then µINSTi = ExoToRamSlideChunk

(e) if [[1]]i = 1 then
i. if [[7]]i = 0 then

if ♦PREi = type4CC then µINSTi = ExoToRamSlideChunk
if ♦PREi = type4RD then µINSTi = RamToRamSlideChunk

if ♦PREi = type4CD then

{
if 〈INFO〉 = 0 then µINSTi = RamToRamSlideChunk
if 〈INFO〉 = 1 then µINSTi = ExoToRamSlideChunk

ii. if [[7]]i = 1 then
if ♦PREi = type4CC then µINSTi = ExoToRamSlideOverlappingChunk
if ♦PREi = type4RD then µINSTi = RamToRamSlideOverlappingChunk

if ♦PREi = type4CD then

{
if 〈INFO〉 = 0 then µINSTi = RamToRamSlideOverlappingChunk
if 〈INFO〉 = 1 then µINSTi = ExoToRamSlideOverlappingChunk

70

(f) if [[7]]i = 0 then {
TLOi+1 = [[5]]i + TLOi

TBOi+1 = NIB_7i
i.e. if the one operation touches a single limb in the target RAM then we move to the next
limb iff NIB_7i = 0 i.e. [[5]]i = 1

(g) if [[7]]i = 1 then {
TLOi+1 = 1 + TLOi

TBOi+1 = NIB_7i
i.e. if the one operation touches a two limbs in the target RAM then necessarily we move
to the second limb that we just modified.

Recall that [[3]]i = 1 corresponds to a the single surgery involving actual data (i.e. at the last
row of preprocessing, which is row i− 1, TOTRDi−1 = 1) so that in the current row (i.e. row i)
TOTRDi = 0. In other words, the constraints in this block apply for a single row.

We next move to the case where there is are multiple “actual data” writing micro-instructions. We
begin with the case where there is a single writing operation:

2. if [[3]]i = 0 we start with the updates to TLO:

(a) if IS_µi−1 = 0 then
TLOi+1 = TLOi + (ALIGNEDi + [[1]]i)

Note that ALIGNEDi + [[1]]i = 1 ⇐⇒ NIB_5 ≥ NIB_3
(b) if IS_µi−1 = IS_µi = IS_µi+1 = 1 then

TLOi+1 = TLOi + 1

The middle condition IS_µi = 1 is redundant (it is part of the section wide assumptions)
but we include it for clarity;

The previous two constraints signify that if NIB_5 ≥ NIB_3 then TLOi grows by one with every
micro instruction. When NIB_5 < NIB_3 the first limb in the target is modified by two successive
micro-instructions. The above constraints capture this.

(c) if IS_µi−1 = 0 i.e. we deal here with the first micro-instruction:
i. SIZEi = (15− NIB_3i) + 1 We could put 16 …
ii. if [[1]]i = 0 then

if ♦PREi = type4CC then µINSTi = ExoToRamSlideChunk
if ♦PREi = type4RD then µINSTi = RamToRamSlideChunk

if ♦PREi = type4CD then

{
if 〈INFO〉i = 0 then µINSTi = RamToRamSlideChunk
if 〈INFO〉i = 1 then µINSTi = ExoToRamSlideChunk

iii. if [[1]]i = 1 then
if ♦PREi = type4CC then µINSTi = ExoToRamSlideOverlappingChunk
if ♦PREi = type4RD then µINSTi = RamToRamSlideOverlappingChunk

if ♦PREi = type4CD then

{
if 〈INFO〉i = 0 then µINSTi = RamToRamSlideOverlappingChunk
if 〈INFO〉i = 1 then µINSTi = ExoToRamSlideOverlappingChunk

(d) if IS_µi−1 = 1 and TOTRDi−1 6= 0 then

71

i. SBOi = 0

ii. TBOi = NIB_5i+SIZEi−16·(ALIGNEDi+[[1]]i). Note that by construction, and for type
4 instructions, ALIGNEDi and [[1]]i measure disjoint events. Thus ALIGNEDi + [[1]]i =
ALIGNEDi + [[1]]i − ALIGNEDi · [[1]]i = ALIGNEDi ∨ [[1]]i is binary. Its interpretation is
ALIGNEDi + [[1]]i = 1 ⇐⇒ NIB_5i ≥ NIB_3i.

iii. if TOTRDi 6= 0 then
A. SIZEi = 16 i.e. we copy full limbs,
B. if ALIGNEDi = 1 then µINSTi = RamToRam

if ♦PREi = type4CC then µINSTi = ExoToRam
if ♦PREi = type4RD then µINSTi = RamToRam

if ♦PREi = type4CD then

{
if 〈INFO〉i = 0 then µINSTi = RamToRam
if 〈INFO〉i = 1 then µINSTi = ExoToRam

C. if ALIGNEDi = 0
if ♦PREi = type4CC then µINSTi = ExoToRamSlideOverlappingChunk
if ♦PREi = type4RD then µINSTi = RamToRamSlideOverlappingChunk

if ♦PREi = type4CD then

{
if 〈INFO〉i = 0 then µINSTi = RamToRamSlideOverlappingChunk
if 〈INFO〉i = 1 then µINSTi = ExoToRamSlideOverlappingChunk

iv. if TOTRDi = 0 then
A. SIZEi = NIB_4i + 1

B. if [[2]]i = 0 then
if ♦PREi = type4CC then µINSTi = ExoToRamSlideChunk
if ♦PREi = type4RD then µINSTi = RamToRamSlideChunk

if ♦PREi = type4CD then

{
if 〈INFO〉i = 0 then µINSTi = RamToRamSlideChunk
if 〈INFO〉i = 1 then µINSTi = ExoToRamSlideChunk

C. if [[2]]i = 1 then
if ♦PREi = type4CC then µINSTi = ExoToRamSlideOverlappingChunk
if ♦PREi = type4RD then µINSTi = RamToRamSlideOverlappingChunk

if ♦PREi = type4CD then

{
if 〈INFO〉i = 0 then µINSTi = RamToRamSlideOverlappingChunk
if 〈INFO〉i = 1 then µINSTi = ExoToRamSlideOverlappingChunk

D. Below we update TLO for the padding phase of the macro-instruction decoding.

if [[2]]i = 1 then
{

TLOi+1 = 1 + TLOi

TBOi+1 = NIB_7i

in other words, if NIB_6 < NIB_4 then the final data writing micro-instruction
(TOTRDi−1 6= 0, TOTRDi = 0) writes on two consecutive limbs (TLOi and 1 +
TLOi) and hence in the first padding operation we will be writing on 1 + TLOi.

if [[2]]i = 0 then
{

TLOi+1 = [[5]]i + TLOi

TBOi+1 = NIB_7i

Otherwise the final data writing micro-instruction wrote data within the same limb
(with offset TLOi). Actually, the two events {[[2]]i = 1} and {[[5]]i = 1} are
mutually exclusive. So we could (and should) replace this with a single
constraint TLOi+1 = ([[2]]i + [[5]]i) + TLOi.

72

Micro-instruction writing: zero padding

We now start with the padding phase of the micro-instruction writing.

All constraints in this subsection assume IS_µi = 1 and TOTRDi−1 = 0

We again distinguish two cases: the case where a single limb in the target context’s RAM needs to be
padded (i.e. TOTPDi = 1 i.e. [[4]]i = 1) and the case where at least 2 (consecutive) limbs in the target
context’s RAM need to be padded (i.e. TOTPDi > 1 i.e. [[4]]i = 0). Note that we use the TOTPDi

name again. We refer the reader to 2.4.8 for the definition and interpretation of this quantity.
In the first case there is only one interesting scenario: when NIB_7 = 0 and NIB_8 = 15. In this

case we can perform a fast “limb killing” operation. Otherwise we need to excise a chunk of bytes from
a RAM limb.

1. if [[4]]i = 1 then

(a) we have already set TLOi and TBOi;
(b) out of precaution, we set SLOi = SBOi = 0;

(c) if
(
[[5]]i = 1 and [[6]] = 1

)
then µINSTi = KillingOne

(d) if
(
[[5]]i = 0 or [[6]] = 0

)
then

i. TBOi = NIB_7i
ii. SIZEi = NIB_8i − NIB_7i + 1

iii. µINSTi = RamLimbExcision

In the second case we write to at least two words in the target context’s RAM. There is a first
write that may be fast (if NIB_7 = 0 i.e. if [[5]]i = 1) otherwise it’s excision of a suffix, it is followed up
by 0 or more full limb killings (which are fast), and the final limb is similar to the first (if NIB_8 = 15
i.e. if [[6]] = 1.)

1. if [[4]]i = 0 then

(a) if TOTRDi−2 6= 0 then
TBOi = NIB_7i
SIZEi = 16− NIB_7i

µINSTi =

{
if [[5]]i = 1 : KillingOne
if [[5]]i = 0 : RamLimbExcision

Note that the constraint “TBOi = NIB_7i” is redundant: we have already imposed as
much at the end of the data writing phase; we repeat it here for sheer convenience. Note
furthermore that we really are in the case where TOTRDi−2 = 1, TOTRDi−1 = 0 and
TOTRDi = 0.

(b) if TOTRDi−2 = 0 then
i. TLOi = TLOi−1 + 1

ii. TBOi = 0

iii. if TOTµ
i 6= 0 then µINSTi = KillingOne

iv. if TOTµ
i = 0 then if [[6]]i = 0 then

{
SIZEi = NIB_8i + 1

µINSTi = RamLimbExcision
if [[6]]i = 1 then µINSTi = KillingOne

73

2.4.9 Type 4 when TERN = 2
Preprocessing

Type 4 instructions with TERN = 2 are the simplest Type 4 RAM macro-instructions to decompose
into a sequence of micro-instructions. They correspond to grossly out of bounds offsets. The net effect
on memory is just to write 〈SIZE〉 many zeros starting at offset 〈OFF1〉. As per usual, we jump straight
to the last preprocessing step.

All constraints in this subsection assume IS_µi = 0 and IS_µi+1 = 1

Note that in the present case (TERN = 2) preprocessing takes 16 lines. Thus the accumulators below
have accumulated 16 bytes. Nonetheless, the integers whose bytes are being accumulated are small
(having passed smallness testing in the Memory Expansion Module) i.e. they fit into 3 bytes. ACC_3
and ACC_4 are thus small (i.e. 3 byte integers.) Note furthermore that we don’t use ACC_2 (even
though it is “unused and available” in this execution branch.)

Euclidean divisions. ACC_3 and ACC_4 target quotients of certain euclidean divisions and NIB_3
and NIB_4 target the associated remainders:{

〈OFF1〉i = 16 · ACC_3i + NIB_3i
〈OFF1〉i + (〈SIZE〉i − 1) = 16 · ACC_4i + NIB_4i

Workflow parameters. We set the total number of micro-instructions:

TOTµ
i = ACC_4i − ACC_3i + 1

We set some binary flags: 

if TOTµ
i = 1 then [[1]]i = 1

if TOTµ
i 6= 1 then [[1]]i = 0

if NIB_3i = 0 then [[3]]i = 1

if NIB_3i 6= 0 then [[3]]i = 0

if NIB_4i = 15 then [[4]]i = 1

if NIB_4i 6= 15 then [[4]]i = 0

In other words: the 〈MMU � 〉-constant binary column [[1]] lights up precisely when the RAM
macro-instruction decomposes into a single micro-instruction; the 〈MMU � 〉-constant binary
columns [[3]] and [[4]] aren’t all that important; their main purpose is to indicate, when [[1]] = 0,
i.e. when the RAM macro-instruction decomposes into at least 2 micro-instructions, whether the
first and final instructions are fast or not.
We set source and target limb and byte offsets{

TLOi+1 = TLOi = ACC_3i
TBOi+1 = TBOi = NIB_3i

Note that we don’t require source offsets: there is no source, we are simply writing zeros to the
target context’s RAM. Note furthermore that the constraint TLOi+1 = TLOi is implicit in the
upcoming set of constraints. We include it purely for the reader’s convenience.

74

Micro-instruction writing

We distinguish several cases. Note that

All constraints in this subsection assume IS_µi = 1

1. TLOi = TLOi−1 + IS_µi−1: the source limb offset grows by 1 with every instruction, regardless
of anything else;

2. if [[1]]i = 1 then

(a) TLOi and TBOi were already set
(b) if [[3]]i = 1 and [[4]]i = 1 then µINSTi = KillingOne

(c) if [[3]]i = 0 or [[4]]i = 0 then{
SIZEi = 〈SIZE〉i
µINSTi = RamLimbExcision

Recall that the case [[1]]i = 1 corresponds to establishing TOTµ = 1 during the precomputation
phase (i.e. a single surgery is required to carry out the macro-instruction.) This single constraint
is sufficient.

3. if [[1]]i = 0 the situation is more complex. By definition the macro-instruction is converted to
TOTµ ≥ 2 micro instructions, the first and last of which may be excisions, and all intermediary
ones being replacing full RAM limbs with zero. This logic is captured below:

(d) if IS_µi−1 = 0 then
i. if [[3]]i = 1 then µINSTi = KillingOne, i.e. target byte offset of the first micro-

instruction is zero and we perform at least 2 micro-instructions: the first operation
thus erases an entire limb;

ii. if [[3]]i = 0 then
A. SIZEi = (15− NIB_1i) + 1

B. µINSTi = RamLimbExcision

In other words, at the first micro-instruction can be either killing a whole limb (if [[3]]i = 1)
or excising a suffix (if [[3]]i = 0)

(e) if IS_µi−1 = 1 then
i. TBOi = 0 i.e. after the first micro instruction we are killing words or excising prefixes;
ii. if TOTµ

i 6= 0 then µINSTi = KillingOne
iii. if TOTµ

i = 0 then
A. if [[4]]i = 1 then µINSTi = KillingOne
B. if [[4]]i = 0 then {

SIZEi = NIB_4i
µINSTi = RamLimbExcision

iv. if TOTµ
i = 0 then

A. SIZEi = NIB_2i + 1

B. if [[3]]i = 0 then µINSTi = RamToRamSlideChunk
C. if [[3]]i = 1 then µINSTi = RamToRamSlideOverlappingChunk

75

2.4.10 Type 5
Instructions

This subsection deals with the preprocessing of Type 5 macro-instructions. There is only one such
instruction, CALLDATALOAD. We note at this point that for a CALLDATALOAD to make it to preprocessing
it must not have been dealt with by the Rare Checks Module. As a consequence its offset parameter
will always satisfy

0 ≤ OFFSET < CDS.

so that at least one byte of call data will be written to stack (with appropriate zero padding if necessary
i.e. if CDS ≤ OFFSET+(32− 1).) The number of “actual” bytes to copy is the first thing we establish
below. This number always lives in the range {1, 2, . . . , 32} (i.e. 0 is excluded by what precedes.)

It might come as a surprise that there is an entire type for a single RAM instruction, especially
given CALLDATALOAD’s apparent kinship with MLOAD. From the point of view of the zk-evm presented
in these notes the instructions are very different. We provide further motivation for this this design
choice in the chapter on RAM data processing; for now note that while is only one type 5 instruction,
there are two different scenarios to consider. The first one is when the current call stack depth
is > 1. In this case call data is located in the present context’s caller’s RAM. In this case the
CALLDATALOAD macro-instruction will be converted into a single “RAM to stack” micro-instruction.
The second case is that when call stack depth is = 1. In this case the call data (transaction call
data, really) must be extracted from a public commitment. Retrieval is more complex in this case
since, as explained in the chapter on RAM data processing, the zk-evm must load the 2 or 3 relevant
limbs, temporarily store them in the 0th context’s RAM (overcoming its memorylessness by means of
the 〈EXCEPTIONAL_RETENTION_FLAG〉) and only then can it start writing to the imported stack
value. In this case the CALLDATALOAD macro-instruction will be converted into a series of 3 “loading
from exogenous data” micro instruction and a single “RAM to stack”.

We further note that the public commitment to Transaction Calldata enforces the following padding
scheme: (1) zero pad to the next multiple of 16 (2) then add two zero limbs. In other words, beyond
the final byte of actual call data there are at least 32 bytes of zero padding. Given that when a
CALLDATALOAD instruction which makes it to preprocessing is reading at least one actual byte from call
data, the zk-evm will always be able to load 3 consecutive limbs of exogenous data from transaction
call data without going out of bounds (and breaking the plookup connection.) We note at this point
that we could have been fancier and only load 1, 2 or 3 limbs from transaction call data depending on
whether OFFSET + 16 ≥ CDS or not. This optimization comes at further complication in the RAM
preprocessor and saves 1 or 2 rows in the RAM data processor.

Preprocessing

As per usual, we jump straight to the last preprocessing step.

All constraints in this subsection assume IS_µi = 0 and IS_µi+1 = 1

We begin establishing some parameters.

Setting OFF_OOBi. We set OFF_OOBi = 0, see previous discussion.

Setting context info. We set CN_Ti = 0 and{
if CSDi = 1 then CN_Si = 0
if CSDi 6= 1 then CN_Si = 〈CALLER〉i

Note that, given the micro instruction we will be writing, setting CN_Ti serves no purpose and
can be omitted.

76

Establishing maximum offset. We first establish the maximum offset of a byte to be copied from
call data and the number of bytes to copy, i.e. we require that:(

2 · [[1]]i − 1
)
·
(
CDSi − (〈OFF1〉i + 32)

)
+
(
[[1]]i − 1

)
= ACC_1i

Let write, out of sheer convenience, NBYTESi = 1 +
(
2 · [[1]]i − 1

)
·
(
CDSi − (〈OFF1〉i + 32)

)
+(

[[1]]i − 1
)
= 1 + ACC_1i. By construction

[[1]]i = 1 ⇐⇒ 〈OFF1〉i + (32− 1) ≤ (CDSi − 1)

[[1]]i = 0 ⇐⇒ 〈OFF1〉i + (32− 1) > (CDSi − 1)

NBYTES ∈ {1, 2, . . . , 32}

We will be interested in finding out whether NBYTESi < 16, NBYTESi = 16, 16 < NBYTESi < 32
or NBYTESi = 32. We thus impose

ACC_1i = 16 · [[2]]i + NIB_2i

which establishes the euclidean division of ACC_1i by 16 (note that in the present case ACC_1 ∈
{0, 1, . . . , 31} and so the quotient is either 0 or 1). Next we establish [[3]]:{

if NIB_2i 6= 15 then [[3]]i = 0
if NIB_2i = 15 then [[3]]i = 1

In other words,
[[2]]i [[3]]i

0 0 ⇐⇒ 0 < NBYTESi < 16

0 1 ⇐⇒ NBYTESi = 16

1 0 ⇐⇒ 16 < NBYTESi < 32

1 1 ⇐⇒ NBYTESi = 32

Establishing TOTµ. We impose that if CSDi = 1 then TOTµ
i = 4

if CSDi 6= 1 then TOTµ
i = 1

NBYTESi ∈ {1, 2, . . . , 32}

as already mentioned, a CALLDATALOAD instruction in a root context requires 3 loads from trans-
action call data.

Establishing alignment. We establish the euclidean division (by 16) of the absolute offset where
reading call data begins

CDOi + 〈OFF1〉i = 16 · ACC_3i + NIB_3i

We define associated binary flags{
if NIB_3i = 0 then ALIGNEDi = 1
if NIB_3i 6= 0 then ALIGNEDi = 0

Establishing [[4]]. The bit column [[4]] is used to distinguish between the two ways of producing a limb
containing both data and padding in the non aligned case. It only matters if ALIGNEDi = 0. We
therefore ask that if ALIGNEDi = 0 then(

2 · [[4]]i − 1
)
·
((

NIB_2i + 1
)
−
(
15− NIB_3i + 1

))
− [[4]]i = NIB_4i

77

In other words, given that ALIGNEDi = 0 we have{
[[4]]i = 1 ⇐⇒

(
15− NIB_3i + 1

)
<

(
NIB_2i + 1

)
[[4]]i = 0 ⇐⇒

(
15− NIB_3i + 1

)
≥

(
NIB_2i + 1

)
Establishing source and target offsets. No surprise here:

SLOi = SLOi+1 = ACC_3i
SBOi = SBOi+1 = NIB_3i
TLOi = TLOi+1 = 0
TBOi = TBOi+1 = 0

Micro-instruction writing

We move on to micro-instruction writing.

All constraints in this subsection assume IS_µi = 1

We first consider the case CSDi 6= 1 i.e. of call data inherited from a CALL-type instruction: there is
nothing left to do (besides the writing the one (and only) micro-instruction). We defer it. We now
consider the case CSDi = 1 i.e. the case of transaction call data

1. if CSDi = 1 then

(a) if IS_µi−1 = 0 then 
µINSTi = StoreXinAthreeRequired
µINSTi+1 = StoreXinB
µINSTi+2 = StoreXinC

(b) We set limb and byte offsets, exo data flags, sizes and the EXCEPTIONAL_RETENTION_FLAG:

if TOTµ
i 6= 0 then


SLOi = SLOi−1 + IS_µi−1

SBOi = SBOi−1

ERFi = 1

X_TXCDi = 1

if TOTµ
i = 0 then



SLOi = 0

SBOi = SBOi−1

ERFi = 0

X_TXCDi = 0

SIZEi = 1 + NIB_2i

Note that updates to the source offset are simple initially: it increase linearly. This trend
ends with the final micro-instruction which resets it to 0 includes a final update to the
source limb offset

Now that parameters are set we can move on to writing the final micro-instruction. At this point there
is no differnence between the two cases CSDi = 1 and CSDi > 1. The only question that matters is:
are offsets aligned or not?

1. if TOTµ
i = 0 then

78

(a) if ALIGNEDi = 1 then

i. if
(
[[2]]i = 0 and [[3]]i = 0

)
then{

µINSTi = FirstPaddedSecondZero
SIZEi = 1 + NIB_2i

ii. if
(
[[2]]i = 0 and [[3]]i = 1

)
then µINSTi = PushOneRamToStack;

iii. if
(
[[2]]i = 1 and [[3]]i = 0

)
then{

µINSTi = FirstFastSecondPadded
SIZEi = 1 + NIB_2i

iv. if
(
[[2]]i = 1 and [[3]]i = 1

)
then µINSTi = PushTwoRamToStack;

(b) if ALIGNEDi = 0 then

i. if
(
[[2]]i = 1 and [[3]]i = 1

)
then µINSTi = NA_RamToStack_3To2Full

ii. if
(
[[2]]i = 1 and [[3]]i = 0

)
then{

if [[4]]i = 1 then µINSTi = NA_RamToStack_3To2Padded
if [[4]]i = 0 then µINSTi = NA_RamToStack_2To2Padded

In both cases, SIZEi = 1 + NIB_2i.
iii. if

(
[[2]]i = 0 and [[3]]i = 1

)
then µINSTi = NA_RamToStack_2To1FullAndZero

iv. if
(
[[2]]i = 0 and [[3]]i = 0

)
then{

if [[4]]i = 1 then µINSTi = NA_RamToStack_2To1PaddedAndZero
if [[4]]i = 0 then µINSTi = NA_RamToStack_1To1PaddedAndZero

In both cases, SIZEi = 1 + NIB_2i.

79

Chapter 3

MMIO

3.1 Outline of the RAM arithmetization
3.1.1 RAM instructions
The mmu module deals with the following instructions:

1. SHA3

2. MLOAD

3. MSTORE

4. MSTORE8

5. CALLDATALOAD

6. CODECOPY

7. EXTCODECOPY

8. RETURNDATACOPY

9. LOG0

10. LOG1

11. LOG2

12. LOG3

13. LOG4

14. CREATE

15. CALL

16. CALLCODE

17. RETURN

18. DELEGATECALL

19. CREATE2

20. STATICCALL

21. REVERT

3.1.2 Column descriptions
Throughout this document we use the word limb to designate a 16-byte integer.

The RAM data processor has, at all times, access to precisely 3 values (limbs) from RAM. These
values can be chosen from distinct execution contexts, including the 0th execution context which plays
a special role. To specify a “value in RAM” we thus require a tuples consisting of (a) an execution
context (b) a limb offset in RAM (c) the limb (i.e. value) stored at that offset. The arithmetization
requires us to add to these (d) a potentially udpated value of that limb and (e) bytes that potentially
spell out the byte decomposition of the limb currently in RAM (i.e. before any potential update). This
is the purpose of the following columns. Since the RAM data processor can access three RAM slots
there are three such quintuples. We give more details below.

Three counter-constant columns containing execution context numbers:

1. CONTEXT_A; abbreviated to CN_A;

2. CONTEXT_B; abbreviated to CN_B;

3. CONTEXT_C; abbreviated to CN_C;

Three counter-constant columns containing limb offsets within the corresponding execution context’s
RAM:

80

4. INDEX_A: limb offset in the RAM of context CN_A;

5. INDEX_B: limb offset in the RAM of context CN_B;

6. INDEX_C: limb offset in the RAM of context CN_C;

Three counter-constant columns containing the limbs currently stored at the given offsets inside the
corresponding execution context’s RAM:

7. VALUE_A: (limb) value currently in CN_A’s RAM at INDEX_A; abbreviated to VAL_A;

8. VALUE_B: (limb) value currently in CN_B’s RAM at INDEX_B; abbreviated to VAL_B;

9. VALUE_C: (limb) value currently in CN_C’s RAM at INDEX_C; abbreviated to VAL_C;

Three counter-constant columns containing potentially updated values of the limbs currently stored at
the given offsets inside the corresponding execution context’s RAM:

10. VALUE_A_NEW; updated value in CN_A’s RAM at INDEX_A; abbreviated to VAL_Aν ;

11. VALUE_B_NEW; updated value in CN_B’s RAM at INDEX_B; abbreviated to VAL_Bν ;

12. VALUE_C_NEW; updated value in CN_C’s RAM at INDEX_C; abbreviated to VAL_Cν ;

Three byte columns which may contain the byte decompositions of VAL_A, VAL_B and/or VAL_C
(depending on whether they are required for the present computation):

13. BYTE_A; byte columns;

14. BYTE_B; byte columns;

15. BYTE_C; byte columns;

We also require three accumulator columns which may witness these byte decompositions:

16. ACC_A: if 〈FAST〉 = 0 accumulates the bytes of the BYTE_A column;

17. ACC_B: if 〈FAST〉 = 0 accumulates the bytes of the BYTE_B column;

18. ACC_C: if 〈FAST〉 = 0 accumulates the bytes of the BYTE_C column;

The following are columns imported from the RAM preprocessor. Colums that are imported
from the RAM preprocessor are distinguished by angular brackets as in 〈X〉. All imported columms
are counter-constant.

19. 〈MICRO_RAM_STAMP〉: contains the RAM micro instruction stamp; abbreviated to 〈µRST〉;

20. 〈 ♦MICRO_INSTRUCTION〉: contains the RAM micro instruction of the current 〈µRST〉; abbre-
viated to 〈µINST〉;

21. 〈CONTEXT_SOURCE〉: context number of the context whose RAM may be used as a source of
limbs; abbreviated to 〈CN_S〉;

22. 〈CONTEXT_TARGET〉: context number of the context whose RAM may be used as a target of
limbs; abbreviated to 〈CN_T〉;

23. 〈IS_INIT〉: binary flag that is smart-contract-number constant ; used to recognize the RETURN
instructions whose return data is deployed bytecode; easily set when doing a CREATE(2) instruc-
tion; for contract deployment the RAM can’t detect it, it’s the ROM that knows,
the stack takes its instructions from the ROM and so the stack can know, too, and
from the stack the RAM can know, too.

81

Figure 3.1: The diagram above contains all the intuition there is to convey about context numbers,
indices, values and updated values. Every execution context (identified by its context number) has
its own RAM, the data in RAM is addressed via an index ∈ {0, 1, . . . } which for the purposes of the
zk-evm always is a 4-byte integer as larger offsets are rejected before getting this far. The data itself is
packaged as “limbs”: 16-byte integers. Instructions may change 0, 1, 2 or even three of the available
RAM limbs at any point in time. In the above only the VALUE_C is modified.

24. 〈SOURCE_LIMB_OFFSET〉: this imported column contains the limb offset of the first limb to
read from / write to in 〈CN_S〉’s RAM; abbreviated to 〈SLO〉

25. 〈TARGET_LIMB_OFFSET〉: this imported column contains the limb offset of the first limb to
read from / write to in 〈CN_T〉’s RAM; abbreviated to 〈TLO〉

26. 〈SOURCE_BYTE_OFFSET〉: this imported column contains the byte offset within the limb to
read from / write to in 〈CN_S〉’s RAM; with values in {0, 1, . . . ,15}; abbreviated to 〈SBO〉;

27. 〈TARGET_BYTE_OFFSET〉: this imported column contains the byte offset within the limb to
read from / write to in 〈CN_T〉’s RAM; with values in {0, 1, . . . ,15}; abbreviated to 〈TBO〉;

28. 〈SIZE〉: an imported column containing a “size” parameter used by certain limb surgeries;

29. 〈FAST〉: binary flag indicating whether a micro instruction is fast (i.e. occupies a single line in
the RAM data processor) or slow (i.e. occupies 16 consecutive lines in the RAM data processor.)

30. 〈EXCEPTIONAL_RETENTION_FLAG〉: a binary flag that signals exceptional behaviour of the
0th execution context’s RAM; abbreviated to 〈ERF〉.

The 0th execution context is a ficticious execution context and its RAM is subject to no internal
consistency constraints. Raising the 〈EXCEPTIONAL_RETENTION_FLAG〉 changes this temporarily
and allows the arithmetization to use the 0th execution context’s RAM as temporary storage.

31. 〈STACK_VALUE_HIGH〉: abbreviated to 〈VAL hi〉;

32. 〈STACK_VALUE_LOW〉: abbreviated to 〈VAL lo〉;

33. BYTE_V hi; abbreviated to ;

34. BYTE_V lo; abbreviated to ;

35. ACC_V hi: if 〈FAST〉 = 0 accumulates the bytes of the BYTE_V hi column;

36. ACC_V lo: if 〈FAST〉 = 0 accumulates the bytes of the BYTE_V lo column;

82

Given the stack pattern of instructions triggering the present module and using stack inputs / outputs
(i.e. MLOAD, MSTORE, MSTORE8 and CALLDATALOAD) 〈VAL hi〉 and 〈VAL lo〉 are imports of 4VAL hi and
4VAL lo respectively.

The RAM interacts with other data sources: the stack, logs, the ROM, transaction call data and
the data to hash. The RAM module has, accordingly, access to values coming from the stack but also
from exogenous data sources i.e. logs, ROM, transaction call data. The following two columns
are counter-constant imported columns containing stack values: These columns only play a role for
MSTORE, MSTORE8, MLOAD and CALLDATALOAD: for MSTORE and MSTORE8, VAL_S hi and VAL_S lo contain
the high and low part of the argument from stack to be stored in RAM; for MLOAD and CALLDATALOAD,
VAL_S hi and VAL_S lo contain the high and low part of the value retrieved from RAM or the call data
respetively; offsets (i.e. where to store or from where to retrieve) are handled elsewhere. We come to
exogenous data columns. These columns contain data from exogenous sources which we define as
being either

• the stack,

• the rom,

• log data,

• transaction input data.

Note that transaction input data can (and does) appear both in the first batch of columns and exoge-
nous data columns. This data comes in

37. 〈EXO_IS_ROM〉: imported binary flag column that lights up whenever the micro instruction
requires exogenous data from ROM; abbreviated to 〈X_ROM〉;

38. 〈EXO_IS_LOG〉: imported binary flag column that lights up for all micro instructions unfolding
a LOG0-LOG4 macro-instruction; abbreviated to 〈X_LOG〉;

39. 〈EXO_IS_SHA3〉: imported binary flag column that lights up for all micro instructions unfolding
a SHA3 instruction; abbreviated to 〈X_SHA3〉;

40. 〈EXO_IS_TXCD〉: imported binary flag column that lights up whenever the micro instruction
requires exogenous data from transaction call data; abbreviated to 〈X_TXCD〉;

41. INDEX_X: contains the limb offset of exogenous data;

42. 〈VAL_X〉: limb column; contains exogenous data;

43. BYTE_X: byte column; may contain the byte decomposition of 〈VAL_X〉;

44. ACC_X: if 〈FAST〉 = 0 accumulates the bytes of the BYTE_X column;

We introduce some book-keeping columns for memory operations involving call data and return data:

45. TRANSACTION_NUMBER: transaction number; imported form the main execution trace; ab-
breviated to TXNUM;

We now introduce some columns that are of use in producing proofs but aren’t meaningful outside
of that.

46. “binary plateau” columns [[1]], [[2]], [[3]], [[4]], [[5]];

47. “accumulator” columns ACC_1, ACC_2, ACC_3, ACC_4, ACC_5, ACC_6;

48. “powers of 256” columns POW_256_1 and POW_256_2;

49. COUNTER: a column that either hovers around 0 or counts up from 0 to 15 and resets to 0; used
for slow memory operations (i.e. when 〈FAST〉 = 0) when byte decompositions are needed;

83

The section on consistency constraints introduces further columns required for checking “execution
context metatdata consistency” as well as for “memory consistency”.

The RAM pre-processor converts RAM instructions into a sequence of RAM micro instructions.
The RAM data processor only knows how to deal with micro instructions. Micro instructions can be
fast (〈FAST〉 = 1) or slow (〈FAST〉 = 0). Fast micro instructions take up exactly one row in the RAM
data processor’s execution trace. Slow micro instructions take up exactly sixteen rows in the RAM
data processor’s execution trace. RAM micro instructions can modify 1, 2 or even 3 limbs at once
through various forms of limb surgery. These limbs may be in RAM, imported from the stack or
part of exogenous data. The modification can use as inputs 1, 2 or even 3 limbs taken from RAM,
the stack or exogenous data. Limb surgeries (micro instructions that modify limbs on a byte level)
are determined by their (data) source, (data) target, a surgery pattern and an offset and potentially a
size. The micro instruction, the source and target, the offsets and the size (if any) are handed down
to the RAM data processor from the pre-processor. Offsets are actually given in terms of a limb offset
and a byte offset determined by euclidean division of the underlying offset by 16:

offset = 16 · limbOffset + byteOffset, byteOffset ∈ {0, 1, . . . ,15}.

The purposed of the following columns is to transmit these data.

50. 〈SOURCE_LIMB_OFFSET〉: limb offset ∈ N of the first (and potentially only) limb used as a
byte source to modify one or more target limbs; abbreviated to 〈SLO〉;

51. 〈SOURCE_BYTE_OFFSET〉: byte offset ∈ {0, 1, . . . ,15} of the first byte in the first (and poten-
tially only) source limb used to modify one or more target limbs; abbreviated to 〈SBO〉;

52. 〈TARGET_LIMB_OFFSET〉: limb offset ∈ N of the first (and potentially only) target limb to be
modified; abbreviated to 〈TLO〉;

53. 〈TARGET_BYTE_OFFSET〉: byte offset ∈ {0, 1, . . . ,15} of the first byte in the first (and poten-
tially only) target limb to be modified; abbreviated to 〈TBO〉.

3.2 Specialized constraints
3.2.1 Binary constraints
Recall that a column X is binary if it satisfies: X · (1−X) = 0. The following columns are binary: [[1]],
[[2]], [[3]], [[4]] and [[5]]

3.2.2 Binary plateau constraints
Suppose X, C are columns such that

• X is binary,

• C is counter-constant.

We say that the pair (X,C) satisfies the binary plateau constraints if

1. if Ci = 0 then Xi = 1,

2. if Ci 6= 0 then

(a) if CTi = 0 then Xi = 0,
(b) if CTi 6= 0 then

i. if CTi = Ci then Xi = Xi−1 + 1,

84

X 1 1 1 · · · 1
CT 0 1 2 · · · 15

X 0 0 0 · · · 0 1 1 · · · 1
CT 0 1 2 · · · c− 1 c c+ 1 · · · 15

X 0 0 0 · · · 0
CT 0 1 2 · · · 15

Figure 3.2: Assuming Plateau(X,C), the above represents a counter-cycle’s worth of X when c = 0,
when 0 < c < 16 and when c ≥ 16.

ii. if CTi 6= Ci then Xi = Xi−1,

and we use the shorthand
Plateau(X,C)

to signify that (X,C) satisfies this constraint. In practice the columns C we will consider will be locally
constant columns with values ∈ {0, 1, 2, . . . ,15}. Figure ?? represents portions (that is, counter-cycles)
of a binary column X that satisfies a binary plateau constraint w.r.t. some counter-constant column C
for different values of c = C.

3.2.3 Power constraints
Let P and X be two columns with

• X binary column.

We say that the pair (P,X) satisfies a power-constraint if it satisfies the following constraints:

1. if 〈µRST〉i = 0 then P = 0

2. if 〈µRST〉i 6= 0 then

(a) if 〈FAST〉i = 1 then Pi = 0

(b) if 〈FAST〉i = 0 then
i. if CTi = 0 then Pi = 1

ii. if CTi 6= 0 then
A. if Xi = 0 then Pi = Pi−1

B. if Xi = 1 then Pi = 256 · Pi−1

Power constraints will be applied in the case where X satisfies a plateau constraint so that P is initially
constant = 1 and then grows geometrically until the end of the current counter-cycle:

CT 0 1 2 · · · c− 1 c c+ 1 · · · 15
X 0 0 0 · · · 0 1 1 · · · 1
P 1 1 1 · · · 1 256 2562 · · · 256d

Figure 3.3: In the picture above X satisfies the plateau constraint Plateau(X, c), 0 < c < 16, and P
satisfies a power constraint Power(P,X). We have set d = 16− c.

Its value at the end of the counter-cycle is in the set {256i | i = 0, 1, . . . ,15}. We use the short
hand

Power(P,X)

to signify that the columns P and X satisfy a power-constraint and we may say that P is pegged to
X.

85

3.2.4 Byte decomposition constraints
Suppose we have

1. a counter-constant column S,

2. and a byte column SB,

3. a third column ACC.
We say that SB computes the byte decomposition of S through ACC if

1. if CTi = 0 then ACCi = SBi,

2. if CTi 6= 0 then ACCi = 256 · ACCi−1 + SBi,

3. if CTi = 15 then ACCi = Si.
We encapsulate these constraints in the following relation

ByteDec(S;SB;ACC)

(Note: CT is implicit)

3.2.5 Suffix extraction
Suppose ACC, B, X are columns with

• B a byte column,

• X a binary column.
In all applications ACC will be an accumulator column, B arises as the byte decomposition of a counter-
constant column S and X satisfies a plateau constraint. We abbreviate under IsolateSuffix(ACC,B,X)
the following set of constraints

1. if CTi = 0 then {
if Xi = 0 then ACCi = 0

if Xi = 1 then ACCi = Bi

2. if CTi 6= 0 then {
if Xi = 0 then ACCi = ACCi−1

if Xi = 1 then ACCi = 256 · ACCi−1 + Bi

3.2.6 Prefix extraction
Suppose ACC, B, X are columns with

• B a byte column,

• X a binary column.
In all applications ACC will be an accumulator column, B arises as the byte decomposition of a counter-
constant column S and X will satisfy a plateau constraint. We abbreviate under IsolatePrefix(ACC,B,X)
the following set of constraints

1. if CTi = 0 then {
if Xi = 0 then ACCi = Bi

if Xi = 1 then ACCi = 0

2. if CTi 6= 0 then {
if Xi = 0 then ACCi = 256 · ACCi−1 + Bi

if Xi = 1 then ACCi = ACCi−1

86

3.2.7 Chunk extraction
Suppose ACC, B, X, Y are columns with

• B a byte column,

• X and Y binary columns.

In applications (and whenever this constraint is activated) X will satisfy a plateau constraint which
jumps at C, Y will satisfy a plateau constraint which jumps at D for nonnegative integers1 0 ≤ C < D.
Furthermore, B will contain the bytes of a (counter-constant) column S. The goal is for ACC to
accumulate the bytes Bi of S for C ≤ i < D. We abbreviate under IsolateChunk(ACC,B,X,Y) the
following set of constraints

1. if CTi = 0 then

(a) if Xi = 0 then ACCi = 0

(b) if Xi = 1 then ACCi = Bi

2. if CTi 6= 0 then

(a) if Xi = 0 then ACCi = 0

(b) if Xi = 1 then
i. if Yi = 0 then ACCi = 256 · ACCi−1 + Bi

ii. if Yi = 1 then ACCi = ACCi−1

3.3 Module consraints
3.3.1 Heartbeat
The columns 〈µRST〉, 〈FAST〉 and CT impose a heartbeat on the RAM module. We ask that they
satisfy the following constraints:

1. 〈FAST〉 is a binary column;

2. 〈µRST〉0 = 0;

3. 〈µRST〉i+1 ∈ {〈µRST〉i, 1 + 〈µRST〉i}2;

4. if 〈µRST〉i = 0 then 〈FAST〉i = 0 and CTi = 0;

5. if 〈µRST〉i 6= 0 then

(a) if 〈FAST〉i = 1 then {
CTi+1 = CTi = 0

〈µRST〉i+1 = 1 + 〈µRST〉i

(b) if 〈FAST〉i = 0 then
i. if CTi 6= 15 then 

〈FAST〉i+1 = 〈FAST〉i
〈µRST〉i+1 = 〈µRST〉i
CTi+1 = 1 + CTi

1nibbles, actually
2i.e. (〈µRST〉i+1 − 〈µRST〉i) · (〈µRST〉i+1 − 〈µRST〉i − 1) = 0

87

ii. if CTi = 15 then {
CTi+1 = 0

〈µRST〉i+1 = 1 + 〈µRST〉i

6. if 〈µRST〉N 6= 0 then

(a) if 〈FAST〉N = 1 no finalization contraint required;
(b) if 〈FAST〉N = 0 then CTN = 15

3.3.2 Byte decomposition constraints
We enforce the following byte decomposition constraints:

1. if (
〈µRST〉i 6= 0 and 〈FAST〉i = 0

)
then 

ByteDec(VAL_A,BYTE_A,ACC_A),
ByteDec(VAL_B,BYTE_B,ACC_B),
ByteDec(VAL_C,BYTE_C,ACC_C),
ByteDec(〈VAL hi〉,BYTE_V hi,ACC_V hi),

ByteDec(〈VAL lo〉,BYTE_V lo,ACC_V lo)

ByteDec(〈VAL_X〉,BYTE_X,ACC_X)

Note that only some of these byte decompositions matter at any one point in time.

3.3.3 Bytehood constraints
The following columns must contain bytes:

1. BYTE_A,

2. BYTE_B,

3. BYTE_C,

4. BYTE_V hi,

5. BYTE_V lo,

6. BYTE_X,

We thus impose a bytehood constraint on

BYTE_A�BYTE_B�BYTE_C�BYTE_V hi�BYTE_V lo�BYTE_X

3.3.4 Counter constancy
We say that a column X is counter-constant if it satisfies{

if 〈µRST〉i = 0 then Xi = 0

if CTi+1 6= 0 then Xi+1 = Xi

88

The table below depicts the behaviour of a typical counter-constant column X:

〈µRST〉 〈FAST〉 COUNTER X
0 0 0 0
0 0 0 0
0 0 0 0

1 1 0 a

2 1 0 b

3 0 0 c
3 0 1 c
3 0 2 c
...

...
...

...
3 0 14 c
3 0 15 c
4 1 0 d

5 1 0 e

6 0 0 f
6 0 0 f
6 0 1 f
6 0 2 f
...

...
...

...
6 0 14 f
6 0 15 f
7 0 0 g
7 0 1 g
7 0 2 g
...

...
...

...

We ask that all imported columns be counter constant. Note that 〈µRST〉 and 〈FAST〉, which
are imported, are counter-constant by the set of constraints from section 8.2.1. Note that we can have
an arbitrary number of rows of all zero (imported) columns at the start of the execution trace.

3.4 Limb transplants
3.4.1 Purpose
Several of the micro instructions that the RAM data processor may be led to execute can be done
in one fell swoop i.e. don’t involve byte decompositions, cutting, grafting nor zero padding. They
simply move one (or more) limb(s) from one place to another. These operations are collectively
dubbed transplants. Transplants don’t present any difficulty in terms of their arithmetization. The
complexity lies in solely determining:

1. Which data source is the donor, which is the recipient?

2. Is exognenous data involved i.e. data from ROM, transaction call data or logs?

3. Are the stack values involved?

4. Does RAM undergo an update or remain identical to itself?

89

Resolving these points leads to greater conceptual clarity. It also leads to having many kinds of micro
instructions that look very similar on the surface but differ in subtle ways and are use by different
opcodes. The second point presents a conceptual challenge: some operations naturally expect 2 or 3
inputs and produce 2 or 3 outputs. However, exogenous data is only available one limb at a time. The
third points presents a similar, though greater, challenge. We made the decision to have it so that
stack values are read from and constructed as pairs rather than one by one3. This is straightforward to
implement for MLOAD, MSTORE, MSTORE8 and CALLDATALOAD performed in a subcontex of the current root
context. But CALLDATALOAD performed in the root context of a transaction poses a proper challenge.
Indeed, transaction call data, like any exogenous data, is only available one limb at a time. Yet
CALLDATALOAD, which, in accordance with the previously stated design principle, wants to produce
〈VAL hi〉 and 〈VAL lo〉 in one go, may require up to 3 limbs from transaction call data. Note as well
that this is the only opcode the RAM deals with that (in theory) doesn’t involve the RAM at all: it’s
a direct transfer (with some potential cutting, grafting and zero padding) from transaction call data
to the stack.

One may reasonably inquire at this stage how the complications arising from limited donor limb
availability and CALLDATALOAD are related to transplants. The answer is that we introduce some trans-
plant operations to prepare the terrain for proper surgeries to come later. Dealing with CALLDATALOAD
(at the root level of a transaction) forced us to introduce an 〈EXCEPTIONAL_RETENTION_FLAG〉
which signals exceptional behaviour of the RAM associated with the 0th execution context. As can
be read off the memory consistency constraints, the memory of the 0th execution context is subject
to no internal consistencies. The 〈ERF〉 changes this temporarily (i.e. for up to 4 consecutive micro
instructions) and allows us to use this “RAM” as a data buffer. This data buffer is then filled with
limbs harvested one by one from transaction call data in up to 3 transplant operations.

A general design principle we have adopted is that operations that “write to” exogenous data
(to be precise: these operations produce values that are then compared to exogenous data4) should
happen at once (i.e. we don’t produce parts of the data in steps, we produce the requisite data in one
counter-cycle).

To help with readability we sometimes insert a (F) near the constraints that “do the work”.

3.4.2 RAM to RAM
The following constraints pertain to aligned (i.e. the “real” or “adjusted” source and target offsets
are ≡ 0 [16]) limb transplants between the memories of two execution contexts. The RAM has at all
times access to precisely three limbs from the RAMs of three (potentially distinct) execution contexts.
Aligned transfers can thus only work one limb at a time. Only one kind of such operation is needed,
which we label RamToRam and arithmetize like so:

RamToRam ⇐⇒



CN_Ai = 〈CN_S〉i
CN_Bi = 〈CN_T〉i
CN_Ci = 0
INDEX_Ai = 〈SLO〉i
INDEX_Bi = 〈TLO〉i
INDEX_Ci = 0
VAL_Aν

i = VAL_Ai

VAL_Bν
i = VAL_Ai (F)

VAL_Cν
i = VAL_Ci = 0

〈ERF〉i = 0
3Recall that stack values are EVM words and are thus comprised of a high and a low part, 〈VAL hi〉 and 〈VAL lo〉

respectively.
4e.g. logs are produced from RAM and then compared to a public commitment of logs, successfully deployed bytecodes

are produced from RAM and compared to existing bytecodes in ROM

90

3.4.3 Exodata to RAM
The following constraints may appear in aligned (EXT)CODECOPYs and CALLDATACOPYs (at the root
execution context of a transaction).

ExoToRam ⇐⇒



CN_Ai = 〈CN_T〉i
CN_Bi = 0
CN_Ci = 0
INDEX_Ai = 〈TLO〉i
INDEX_Bi = 0
INDEX_Ci = 0
INDEX_Xi = 〈SLO〉i
VAL_Aν

i = 〈VAL_X〉i (F)
VAL_Bν

i = VAL_Bi = 0
VAL_Cν

i = VAL_Ci = 0
〈ERF〉i = 0

3.4.4 Exodata and RAM agree
The following set of constraints appears in

1. aligned LOG0-LOG4 (i.e. when the offset is ≡ 0 [16]),

2. aligned RETURNs in deployment contexts (CTYPE = 1 and deployment succedes).

We dub it RamIsExo:

RamIsExo ⇐⇒



CN_Ai = 〈CN_S〉i
CN_Bi = 0
CN_Ci = 0
INDEX_Ai = 〈SLO〉i
INDEX_Bi = 0
INDEX_Ci = 0
INDEX_Xi = 〈TLO〉i
VAL_Aν

i = VAL_Ai

VAL_Bν
i = VAL_Bi = 0

VAL_Cν
i = VAL_Ci = 0

〈VAL_X〉i = VAL_Ai (F)
〈ERF〉i = 0

3.4.5 Killing RAM slots
Executing some opcodes may require us to replace entire limbs with 0. This is true of

• out of bounds CODECOPYs,

• out of bounds EXTCODECOPYs,

• out of bounds CALLDATACOPYs.

Since we have three RAM slots at our disposal at any time we can kill up to 3 limbs in RAM per micro
instruction. The following named constraints accomplish this:

91

1. Killing one limb:

KillingOne ⇐⇒



CN_Ai = 〈CN_T〉i
CN_Bi = 0
CN_Ci = 0
INDEX_Ai = 〈TLO〉i
INDEX_Bi = 0
INDEX_Ci = 0
VAL_Aν

i = 0 (F)
VAL_Bi = VAL_Bν

i = 0
VAL_Ci = VAL_Cν

i = 0
〈ERF〉i = 0

2. Killing two consecutive limbs:

KillingTwo ⇐⇒



CN_Ai = 〈CN_T〉i
CN_Bi = 〈CN_T〉i
CN_Ci = 0
INDEX_Ai = 〈TLO〉i
INDEX_Bi = 〈TLO〉i + 1
INDEX_Ci = 0
VAL_Aν

i = 0 (F)
VAL_Bν

i = 0 (F)
VAL_Ci = VAL_Cν

i = 0
〈ERF〉i = 0

3. Killing three consecutive limb:

KillingThree ⇐⇒



CN_Ai = 〈CN_T〉i
CN_Bi = 〈CN_T〉i
CN_Ci = 〈CN_T〉i
INDEX_Ai = 〈TLO〉i
INDEX_Bi = 〈TLO〉i + 1
INDEX_Ci = 〈TLO〉i + 2
VAL_Aν

i = 0 (F)
VAL_Bν

i = 0 (F)
VAL_Cν

i = 0 (F)
〈ERF〉i = 0

3.4.6 RAM to stack
We use the moniker PushTwoRamToStack to subsume the following set of constraints:

PushTwoRamToStack ⇐⇒



CN_Ai = 〈CN_S〉i
CN_Bi = 〈CN_S〉i
CN_Ci = 0
INDEX_Ai = 〈SLO〉i
INDEX_Bi = 〈SLO〉i + 1
INDEX_Ci = 0
VAL_Aν

i = VAL_Ai

VAL_Bν
i = VAL_Bi

VAL_Cν
i = VAL_Ci = 0

〈VAL hi〉i = VAL_Ai (F)

〈VAL lo〉i = VAL_Bi (F)
〈ERF〉i = 0

92

we also require a version where we push only one limb:

PushOneRamToStack ⇐⇒



CN_Ai = 〈CN_S〉i
CN_Bi = 0
CN_Ci = 0
INDEX_Ai = 〈SLO〉i
INDEX_Bi = 0
INDEX_Ci = 0
VAL_Aν

i = VAL_Ai

VAL_Bν
i = VAL_Bi = 0

VAL_Cν
i = VAL_Ci = 0

〈VAL hi〉i = VAL_Ai (F)

〈VAL lo〉i = 0 (F)
〈ERF〉i = 0

3.4.7 Stack to RAM
We use the moniker PushTwoStackToRam to subsume the following set of constraints:

PushTwoStackToRam ⇐⇒



CN_Ai = 〈CN_T〉i
CN_Bi = 〈CN_T〉i
CN_Ci = 0
INDEX_Ai = 〈TLO〉i
INDEX_Bi = 〈TLO〉i + 1
INDEX_Ci = 0

VAL_Aν
i = 〈VAL hi〉i (F)

VAL_Bν
i = 〈VAL lo〉i (F)

VAL_Ci = 0
〈ERF〉i = 0

3.4.8 Transaction call data to RAM
The following constraints allow the 0th execution context’s RAM (which is memoryless) to function as
temporary storage where we may store up to 3 limbs taken from transaction call data. The only scenario
where these constraints come into play is when executing CALLDATALOAD in a root execution context,
i.e. CALLDATALOADing transaction call data. Note that this is the only scenario where RAM isn’t
involved per se, see table 3.13. The 〈EXCEPTIONAL_RETENTION_FLAG〉 signals such exceptional
behaviour of the 0th execution context’s RAM.

The RAM preprocessor will initially assess how many limbs (if any) have to be imported from
transaction call data to honour a CALLDATALOAD instruction in a root execution context: this may be
0, 1, 2 or 3. None are needed precisely when requested 32 bytes of calldata are out of bounds, in this
case no instruction is sent to the RAM data processor and the RAM preprocessor simply checks that
both 〈VAL hi〉 and 〈VAL lo〉 are both 0. Otherwise one of the following sequences of instructions is sent
to the data processor:

• a StoreXinAoneRequired micro instruction,

• a StoreXinAtwoRequired micro instruction followed by a StoreXinB micro instruction,

• a StoreXinAthreeRequired micro instruction followed by StoreXinB and StoreXinC micro in-
structions,

invariably followed by a (fast or slow) transfer to stack values (i.e. to 〈VAL hi〉 and 〈VAL lo〉) of the
relevant portion of three limbs currently in the 0th execution context’s RAM.

93

We start by describing the StoreXinAoneRequired, StoreXinAtwoRequired, StoreXinAthreeRequired
constraints.

1. StoreXinAoneRequired:

CN_Ai = 0
CN_Bi = 0
CN_Ci = 0
INDEX_Ai = 0
INDEX_Bi = 0
INDEX_Ci = 0
INDEX_Xi = 〈SLO〉i
VAL_Ai+1 = VAL_Ai = 〈VAL_X〉i (F)
VAL_Bi+1 = VAL_Bi = 0 (F)
VAL_Ci+1 = VAL_Ci = 0 (F)
VAL_Aν

i+1 = VAL_Aν
i = 0

VAL_Bν
i+1 = VAL_Bν

i = 0
VAL_Cν

i+1 = VAL_Cν
i = 0

〈ERF〉i = 1 (F)

2. StoreXinAtwoRequired:

StoreXinAtwoRequired ⇐⇒



CN_Ai = 0
CN_Bi = 0
CN_Ci = 0
INDEX_Ai = 0
INDEX_Bi = 0
INDEX_Ci = 0
INDEX_Xi = 〈SLO〉i
VAL_Ai+1 = VAL_Ai = 〈VAL_X〉i (F)
VAL_Bi+1 = VAL_Bi (F)
VAL_Ci+1 = VAL_Ci = 0 (F)
VAL_Aν

i+1 = VAL_Aν
i = 0

VAL_Bν
i+1 = VAL_Bν

i = 0
VAL_Cν

i+1 = VAL_Cν
i = 0

〈ERF〉i = 1 (F)

3. StoreXinAthreeRequired:

StoreXinAthreeRequired ⇐⇒



CN_Ai = 0
CN_Bi = 0
CN_Ci = 0
INDEX_Ai = 0
INDEX_Bi = 0
INDEX_Ci = 0
INDEX_Xi = 〈SLO〉i
VAL_Ai+1 = VAL_Ai = 〈VAL_X〉i (F)
VAL_Bi+1 = VAL_Bi (F)
VAL_Ci+1 = VAL_Ci (F)
VAL_Aν

i+1 = VAL_Aν
i = 0

VAL_Bν
i+1 = VAL_Bν

i = 0
VAL_Cν

i+1 = VAL_Cν
i = 0

〈ERF〉i = 1 (F)

94

Followed by StoreXinB and StoreXinC

4. StoreXinB:

StoreXinB ⇐⇒



CN_Ai = 0
CN_Bi = 0
CN_Ci = 0
INDEX_Ai = 0
INDEX_Bi = 0
INDEX_Ci = 0
INDEX_Xi = 〈SLO〉i
VAL_Ai+1 = VAL_Ai (F)
VAL_Bi+1 = VAL_Bi = 〈VAL_X〉i (F)
VAL_Ci+1 = VAL_Ci (F)
VAL_Aν

i+1 = VAL_Aν
i = 0

VAL_Bν
i+1 = VAL_Bν

i = 0
VAL_Cν

i+1 = VAL_Cν
i = 0

〈ERF〉i = 1 (F)

5. StoreXinC:

StoreXinC ⇐⇒



CN_Ai = 0
CN_Bi = 0
CN_Ci = 0
INDEX_Ai = 0
INDEX_Bi = 0
INDEX_Ci = 0
INDEX_Xi = 〈SLO〉i
VAL_Ai+1 = VAL_Ai (F)
VAL_Bi+1 = VAL_Bi (F)
VAL_Ci+1 = VAL_Ci = 〈VAL_X〉i (F)
VAL_Aν

i+1 = VAL_Aν
i = 0

VAL_Bν
i+1 = VAL_Bν

i = 0
VAL_Cν

i+1 = VAL_Cν
i = 0

〈ERF〉i = 1 (F)

Let us explain the highlights (F) we put throughout. First of all we highlight the times that
〈EXCEPTIONAL_RETENTION_FLAG〉 is set. Notice that throughout the context whose RAM we
manipulate is that of the 0th context. We thus highlight the rows indicating whenever the values in A,
B and C are propagated to the next row. Those are the exceptional data retention constraints. They
make it so that

• if we execute a StoreXinAoneRequired micro instruction, the next micro instruction (which will
invariably be writing to the stack) uses as input the three limbs (〈VAL_X〉i, 0, 0);

• a StoreXinAtwoRequired micro instruction is invariably followed by a StoreXinB micro instruc-
tion and the next micro instruction (which will invariably be writing to the stack) uses as input
the three limbs (〈VAL_X〉i, 〈VAL_X〉i+1, 0) where 〈VAL_X〉i and 〈VAL_X〉i+1 will be consecutive
values from transaction data;

• a StoreXinAthreeRequired micro instruction is invariably followed by StoreXinB and StoreXinC
micro instructions and the next micro instruction (which will invariably be writing to the stack)
uses as input the three limbs (〈VAL_X〉i, 〈VAL_X〉i+1, 〈VAL_X〉i+2) where 〈VAL_X〉i, 〈VAL_X〉i+1

and 〈VAL_X〉i+2 will be consecutive values from transaction data.

95

The fact that 〈VAL_X〉i, 〈VAL_X〉i+1 and 〈VAL_X〉i+2 will be consecutive values from transaction
call data and that instruction orders are imposed in the manner described above isn’t imposed in the
data processing part of RAM: it will be imposed at the RAM preprocessing level, where the micro
instructions are formed. We will thus impose using transaction call data as the exogenous data source
and for the two or three consecutive instructions just described use consecutive limb offsets.invariably
followed by a (fast or slow) transfer to stack values (i.e. to 〈VAL hi〉 and 〈VAL lo〉) of the relevant portion
of three limbs currently in the 0th execution context’s RAM.

3.5 Surgical patterns
3.5.1 Purpose
The present section compiles all variations on cutting, grafting and padding that the RAM needs and
labels them. These surgical patterns are couched in a neutral setting in the sense that we use place
holder names such as S to SB. These will later will be replaced with actual column names such as
〈VAL hi〉 or BYTE_A. We also use markers for what will eventually be byte offsets ∈ {1, . . . ,15}.

We tend to use the same variable names over and over. Here is their general interpretation: (1) the
letter S and T stand, respetively, for source and target; source and target limbs are assumed counter-
constant; source limbs are generally used as a source of bytes with which to modify one or more target
limbs; (2) an exponent (−)ν is meant to signal a “new” or “updated” value i.e. a value that is computed
by the constraints; “new” values are always counter-constant; (3) the letter B stands for byte; (4) the
letter M stands for marker i.e. a “byte marker” or “byte offset” within a limb; (5) the letter P stands
for power. Thus the reader should interpret column names such as S1M, T2B and Tν as “(byte) marker
in the first source limb”, “bytes of the second target limb” and “new value of the target limb.” Every
surgical pattern is given a detailed interpretation before any constraints are written down. A picture
accompanies it to make the intent clear.

3.5.2 Single byte swap
Suppose we are given

• counter-constant columns S, T and Tν ,

• byte columns SB and TB,

• binary columns [[1]] and [[2]],

• an “accumulator” column ACC,

• a counter-constant column TM,

• a column P.

The interpretation is the following: S contains a limb from which we will extract the least significant
byte; TM is a marker that marks a byte in T; T contains a limb of which we wish to modify the marked
byte; [[1]] and [[2]] are binary columns with threshold at T and T + 1 respectively; P is a “powers of
256” column that will allow us modify a single byte in T; the resulting limb is recorded in Tν .

We give the set of conditions below under a name:

1. binary plateau constraints:

(a) Plateau([[1]],TM)

(b) Plateau([[2]],TM + 1);

2. chunk constraint: IsolateChunk(ACC,TB, [[1]], [[2]]);

96

3. power constraint: Power(P, [[2]]);

4. update constraint:
if CTi = 15 then Tν

i = Ti + (SBi − ACCi) · Pi

We encapsulate these constraints in a relation

ByteSwap
(

S,T,Tν ;SB,TB;
ACC,P;TM, [[1]], [[2]];

)
(Note: the counter column CT is implicit in this relation.)

Figure 3.4: Representation of the constraints implemented by ByteSwap.

3.5.3 Excision
Suppose the following are given:

1. counter-constant columns T and Tν ,

2. binary columns [[1]] and [[2]],

3. a byte colunm TB,

4. a counter-constant column TM,

5. a counter-constant column SIZE,

6. an accumulator column ACC;

7. a “powers of 256 column” column P;

The interpretation is as follows: T is a counter-constant column containing a value from which we
wish to remove a chunk of consecutive bytes; TB is T’s byte decomposition; Tν is the counter-constant
column that will contain the result of excision; TM is a byte marker in T; SIZE is the number of bytes
to remove from T starting at byte offset TM; we expect TM + (SIZE − 1) ≤ 15; [[1]] plateaus at TM,
[[2]] plateaus at TM + SIZE; the bytes to be excised are accumulated in ACC; P is a “powers of 256
column” pegged to [[2]].

We collect the following constraints under the moniker Excision :

1. plateau constraints:

97

(a) Plateau([[1]],TM)

(b) Plateau([[2]],TM + SIZE)

2. chunk constraint: IsolateChunk(ACC,TB, [[1]], [[2]]);

3. power constraint: Power(P, [[2]])

4. value enforcement:
if CTi = 15 then Tν

i = Ti − ACCi · Pi

We subsume this collection of constraints under the moniker

Excision
(

T,Tν ;TB;ACC,P;
TM,SIZE; [[1]], [[2]];

)

Figure 3.5: Representation of the constraints implemented by Excision.

3.5.4 [1⇒ 1 Padded]

Supppose we are given

• binary columns [[1]], [[2]] and [[3]],

• counter-constant columns S, T,

• a byte column SB,

• counter-constant columns SM and SIZE

• an accumulator column ACC,

• a column P.
The interpretation is as follows: S is a limb from which we will harvest a chunk of bytes; SB is the
byte decomposition of S; SM is the offset within S from where we start harvesting bytes; SIZE is the
number of bytes to harvest; the assumption is that SM + (SIZE− 1) ≤ 15; T will be made to contain
this chunk of bytes (left aligned); [[1]] plateaus at SM; [[2]] plateaus at SM+ SIZE; [[3]] plateaus at SIZE;
P is pegged to [[3]] and builds the correct power of 256 so that we may shift the harvested chunk to
build the desired (left-aligned) prefix. Compare with figure ??

We the following collection of constraints ensures the desired behaviour:

98

1. binary plateau constraints:

(a) Plateau([[1]],SM),
(b) Plateau([[2]],SM + SIZE),
(c) Plateau([[3]],SIZE);

2. chunk constraint: IsolateChunk(ACC,SB, [[1]], [[2]]);

3. power constraint: Power(P, [[3]]);

4. value enforcement
if CTi = 15 then Ti = ACCi · Pi.

We use the short hand
[1⇒ 1 Padded]

(
S,T;SB;ACC,P;

SM,SIZE; [[1]], [[2]], [[3]];

)

Figure 3.6: Representation of the constraints implemented by [1⇒ 1 Padded].

3.5.5 [2⇒ 1 Padded]

Supppose we are given

• binary columns [[1]], [[2]], [[3]] and [[4]],

• counter-constant columns S1, S2, T,

• byte columns S1B and S2B,

• counter-constant columns S1M and SIZE,

• accumulator columns ACC_1 and ACC_2,

• two columns P1 and P2.

The interpreation is as follows: S1 contains a limb from which we extract a suffix; ACC_1 will accumu-
late the bytes of said suffix; S2 contains a limb from which we extract a prefix; ACC_2 will accumulate
the bytes of said prefix; S1B and S2B are the respective byte decompositions; S1M is the offset within
S1 from where we start harvesting bytes; SIZE is the total number of bytes to harvest; T will be made
to contain the prefix extracted from S1 followed by the prefix extracted from S2 (left aligned); the
assumption is that S1M + SIZE > 16 so that two byte sources are required to build T; [[1]] plateaus
at S1M; [[2]] plateaus at S1M + SIZE − 16; [[3]] plateaus at 16 − S1M; [[4]] plateaus at SIZE; P1 and

99

P2 are “powers of 256” columns with P1 pegged to [[3]] and P2 pegged to [[4]]; together they build the
correct powers of 256 required for shifting the extracted prefix and suffix and building T. Compare
with figure ??.

The following collection of constraints ensures the desired behaviour:

1. binary plateau constraints:

(a) Plateau([[1]],S1M),
(b) Plateau([[2]],S1M + SIZE− 16),
(c) Plateau([[3]], 16− S1M);
(d) Plateau([[4]],SIZE);

2. prefix and suffix constraints:

(a) IsolateSuffix(ACC_1,S1B, [[1]]);
(b) IsolatePrefix(ACC_2,S2B, [[2]]);

3. power constraints:

(a) Power(P1, [[3]]);
(b) Power(P2, [[4]]);

4. value enforcement

if CTi = 15 then Ti = ACC_1i · P1i + ACC_2i · P2i.

We use the short hand

[2⇒ 1 Padded]

 S1,S2,T;S1B,S2B;
ACC_1,ACC_2;P1,P2;

S1M,SIZE; [[1]], [[2]], [[3]], [[4]];



Figure 3.7: Representation of the constraints implemented by [2⇒ 1 Padded].

3.5.6 [1 Full⇒ 2]

Supppose we have

• binary columns [[1]], [[2]],

• counter-constant columns S, T1, T2, T1ν , T2ν ,

100

• a counter-constant column T1M,

• byte columns SB, T1B, T2B,

• accumulator columns ACC_1,ACC_2,ACC_3,ACC_4,

• a column P.

The interpreation is as follows: S is a limb from which we will harvest all bytes (hence the descriptor
full); T1 and T2 are limbs which we will updata using S’s bytes; T1ν and T2ν are their “new” values;
SB, T1B, T2B are the respective byte decompositions; T1M is a marker for bytes in T1; [[1]] plateaus
at T1M; [[2]] plateaus at 16− T1M; P is pegged to [[1]] and builds the correct power of 256 so that we
may change the relevant prefix of T2.

The following collection of constraints ensures the desired behaviour.

Plateau constraints: 1. Plateau([[1]],T1M)

2. Plateau([[2]], 16− T1M)

Prefix and suffix constraints: 1. IsolateSuffix(ACC_1,T1B, [[1]]),
2. IsolatePrefix(ACC_2,T2B, [[1]]),
3. IsolatePrefix(ACC_3,SB, [[2]]),
4. IsolateSuffix(ACC_4,SB, [[2]]),

Power constraint: Power(P, [[1]]),

Update constraints: if CTi = 15 then

1. T1νi = T1i + (ACC_3i − ACC_1i)
2. T2νi = T2i + (ACC_4i − ACC_2i) · Pi

We encapsulate all these constraints under a single relation

[1 Full⇒ 2]


S,T1,T2,T1ν ,T2ν ;

SB,T1B,T2B;
ACC_1,ACC_2,

ACC_3,ACC_4,P;
T1M, [[1]], [[2]];



Figure 3.8: This diagram explains the [1 Full⇒ 2] constraint and the greek letters mentioned in the
constraints.

101

3.5.7 [2⇒ 1 Full]

Supppose we have

• counter-constant columns S1, S2, T,

• a counter-constant column SM,

• binary columns [[1]], [[2]],

• byte columns S1B, S2B,

• accumulator columns ACC_1, ACC_2,

• a column P.

The interpreation is as follows: S1, S2 are limbs from which we will harvest a suffix and a prefix
respectively; S1B, S2B are the respective byte decompositions of S1 and S2; ACC_1 and ACC_2
accumulate the bytes of the desired suffix and prefix; T is a limb which we will construct the previously
extracted suffix and prefix; SM is a marker for bytes in S1; [[1]] plateaus at SM; [[2]] plateaus at 16−SM;
P is pegged to [[2]] and builds a power of 256: it is used to left shift the suffix extracted from S1.

The following collection of constraints ensures the desired behaviour.

1. binary plateau constraints:

(a) Plateau([[1]],SM),
(b) Plateau([[2]], 16− SM);

2. prefix and suffix constraints:

(a) IsolateSuffix(ACC_1,S1B, [[1]]) i.e. ACC_1 =⇒ α′,
(b) IsolatePrefix(ACC_2,S2B, [[1]]) i.e. ACC_2 =⇒ β;

3. power constraint: Power(P, [[2]]);

4. value enforcement: if CTi = 15 then Ti = ACC_1i · Pi + ACC_2i.

We encapsulate all these constraints under a single relation

[2⇒ 1 Full]


S1,S2,T;
S1B,S2B;

ACC_1,ACC_2;P;
SM; [[1]], [[2]];


3.5.8 [1 Partial⇒ 1]

Suppose we have

• binary columns [[1]], [[2]], [[3]], [[4]],

• counter constant columns S, T and Tν ,

• byte columns SB and TB,

• counter constant columns SM and TM,

• a counter constant column SIZE,

• a “powers” column P and “accumulator” columns ACC_1, ACC_2.

102

The interpretation is as follows: S and T are counter-constant columns containing limbs viewed re-
spectively as a “source” and a “target” limb; SB and TB are their respective byte decomposition; Tν

contains the “new” value of T; SM and TM are markers ∈ {0, 1, . . . ,15} for for S and T respectively;
we expect both SM + (SIZE − 1) ≤ 15 and TM + (SIZE − 1) ≤ 15; P is pegged to [[2]] and computes
the appropriate power of 256 so that we may replace a chunk from T with a chunk from S. Compare
with figure ??.

We collect the following constraints under a collective name

1. binary-plateau-constraints:

(a) Plateau([[1]],TM)

(b) Plateau([[2]],TM + SIZE)
(c) Plateau([[3]],SM)

(d) Plateau([[4]],SM + SIZE)

2. chunk-constraints

(a) IsolateChunk(ACC_1,TB, [[1]], [[2]])
(b) IsolateChunk(ACC_2,SB, [[3]], [[4]])

3. power-constraint: Power(P, [[2]])

4. update constraint:

if CTi = 15 then Tν
i = Ti + (ACC_2i − ACC_1i) · Pi.

We encapsulate all these constraints under a single relation

[1 Partial⇒ 1]


S,T,Tν ;SB,TB;

ACC_1,ACC_2;P;
SM,TM;SIZE;
[[1]], [[2]], [[3]], [[4]];


(Note: we don’t explicitly mention the CT column in this constraint, it is implicit)

Figure 3.9: Representation of the constraints implemented by [1 Partial⇒ 1].

103

3.5.9 [1 Partial⇒ 2]

Suppose we have

• binary columns [[1]], [[2]], [[3]], [[4]], [[5]]

• counter constant columns S, T1, T2, T1ν , T2ν

• byte columns SB, T1B and T2B,

• counter constant columns SM and T1M,

• a counter constant column SIZE,

• a column P

The interpretation is as follows: S, T1 and T2 are counter-constant columns containing limbs viewed
respectively as a “source” and two “target” limbs; SB, T1B and T2B are their respective byte de-
composition; T1ν and T2ν contain the “new” value of T1 and T2 respectively; SM and TM are
markers ∈ {0, 1, . . . ,15} for S and T1 respectively. We expect both SM + (SIZE − 1) ≤ 15 and
TM + (SIZE− 1) ≥ 16. Compare with figure ??.

We collect the following constraints under a collective name:

1. plateau constraints

(a) Plateau([[1]],T1M)

(b) Plateau([[2]],T1M + SIZE− 16)

(c) Plateau([[3]],SM)

(d) Plateau([[4]],SM + 16− T1M)

(e) Plateau([[5]],SM + SIZE)

2. prefix, suffix and chunk constraints:

(a) IsolateSuffix(ACC_1,T1B, [[1]]),
(b) IsolatePrefix(ACC_2,T2B, [[2]]),
(c) IsolateChunk(ACC_3,SB, [[3]], [[4]]),
(d) IsolateChunk(ACC_4,SB, [[4]], [[5]]),

3. power-constraint: Power(P, [[2]])

4. update constraint:

if CTi = 15 then

{
T1νi = T1i + (ACC_3i − ACC_1i)
T2νi = T2i + (ACC_4i − ACC_2i) · Pi.

We encapsulate all these constraints under a single relation

[1 Partial⇒ 2]


S,T1,T2,T1ν ,T2ν ;SB,T1B,T2B;
ACC_1,ACC_2,ACC_3,ACC_4;P;

SM,T1M,SIZE;
[[1]], [[2]], [[3]], [[4]], [[5]];


(Note: we don’t explicitly mention the CT column in this constraint, it is implicit)

104

Figure 3.10: Representation of the constraints implemented by [1 Partial⇒ 2].

3.5.10 [2 Full⇒ 3]

Suppose we are given

• counter-constant columns T1, T3, S1, S2,

• byte columns T1B, T3B, S1B, S2B,

• counter-constant columns T1ν , T2ν , T3ν ,

• counter-constant column TM,

• two binary columns [[1]], [[2]],

• a column P,

• and accumulator columns ACC_1, ACC_2, ACC_3, ACC_4, ACC_5, ACC_6.

The interpretation is as follows: T1 and T3 are limb columns to be modified; T1B, T3B are the
respective byte decompositions; TM ∈ {1, . . . ,15} is a marker for T1 indicating the index of the first
byte to change; S1 and S2 are limbs from which we will extract all the bytes (hence the qualifier full);
S1B and S2B are the respective byte decompositions; T1 will have its suffix swapped out with a prefix
from S1, yielding T1ν ; T3 will have its prefix swapped out with a suffix from S2, yielding T3ν ; T2ν
will be constructed from the remaining suffix of S1 and the remaining prefixS2; [[1]] and [[2]] are binary
plateau columns with threshholds TM and 16 − TM respetively; ACC_1, ACC_2, ACC_3, ACC_4,
ACC_5, ACC_6 will hold all the relevant prefixes and suffixes; P is a “powers of 256” column pegged
to [[1]] used to perform the adequate shifts.

1. binary plateau constraints:

(a) Plateau([[1]],TM)

(b) Plateau([[2]],16− TM)

2. prefix and suffix constraints:

(a) IsolateSuffix(ACC_1,T1B, [[1]]),
(b) IsolatePrefix(ACC_2,T3B, [[1]]),
(c) IsolatePrefix(ACC_3,S1B, [[2]]),
(d) IsolateSuffix(ACC_4,S1B, [[2]]),
(e) IsolatePrefix(ACC_5,S2B, [[2]]),

105

(f) IsolateSuffix(ACC_6,S2B, [[2]]),

3. power constraint: Power(P, [[1]])

4. update constraints: if CTi = 15 then

(a) T1νi = T1i + (ACC_3i − ACC_1i)
(b) T2νi = ACC_4i · Pi + ACC_5i
(c) T3νi = T3i + (ACC_6i − ACC_2i) · Pi

We encapsulate these constraints under in a relation:

[2 Full⇒ 3]


T1,T3,S1,S2,T1ν ,T2ν ,T3ν ;

T1B,T3B,S1B,S2B;
ACC_1,ACC_2,ACC_3,
ACC_4,ACC_5,ACC_6;

P;TM; [[1]], [[2]];



Figure 3.11: Representation of the constraints implemented by [2 Full⇒ 3].

3.5.11 [3⇒ 2 Full]

Suppose we are given

• counter-constant columns S1, S2, S3, T1 and T2,

• byte columns S1B, S2B, S3B,

• SM a counter-constant column,

• binary columns [[1]], [[2]],

• accumulator columns ACC_1, ACC_2, ACC_3 and ACC_4,

• a colum P.

The intrepretation is as follows: S1, S2 and S3 are viewed as “source” limbs from which we will extract
prefixes and suffixes; S1B, S2B and S3B are their byte decomposition; T1 and T2 are viewed as “target”
limb columns; their value will be constructed from suffixes and prefixes of S1, S2 and S3; SM sets a
mark at a particular byte of S1, S2 and S3; [[1]] and [[2]] are binary plateau columns with jump at SM
and 16− SM respecitvely; P is a “powers of 256” column that is pegged to [[2]].

Figure 3.12 illustrates the effect of the [3⇒ 2 Full] elementary surgery. The following are the
associated constraints:

106

Plateau constraints: 1. Plateau([[1]],SM)

2. Plateau([[2]], 16− SM)

Prefix and suffix constraints: 1. IsolateSuffix(ACC_1,S1B, [[1]]),
2. IsolatePrefix(ACC_2,S2B, [[1]]),
3. IsolateSuffix(ACC_3,S2B, [[1]]),
4. IsolatePrefix(ACC_4,S3B, [[1]]),

Power constraint: Power(P, [[2]])

Update constraints: if CTi = 15 then

1. T1i = ACC_1i · Pi + ACC_2i
2. T2i = ACC_3i · Pi + ACC_4i

We encapsulate these constraints into a single relation

[3⇒ 2 Full]


S1,S2,S3,T1,T2;

S1B,S2B,S3B;
[[1]], [[2]],P,SM;

ACC_1,ACC_2,
ACC_3,ACC_4;


(Note: we don’t explicitly mention the CT column in this constraint, it is implicit.)

Figure 3.12: Representation of the constraints implemented by [3⇒ 2 Full] .

3.6 Limb surgery
3.6.1 Data sources and targets
The following lists for every opcode that may trigger memory operations the possibly origin and
destination.

107

Instructions donor recipient encoding surgeries
LOG0-LOG4 RAM logs 1 6, 7, 11, 12;
MLOAD, CALLDATALOAD if CALLER 6= 0 RAM stack 2 1, 2;
RETURN if CTYPE = 1, CREATE(2) RAM ROM 3 6, 7, 11, 12;
CALLDATACOPY if CALLER 6= 0; REVERT, RAM RAM 4
RETURN if CTYPE = 0; RETURNDATACOPY 6, 8, 13;
MSTORE; MSTORE8 stack RAM 5 3, 4; 8;
(EXT)CODECOPY ROM RAM 6 6, 8, 9, 10;
CALLDATACOPY if CALLER = 0 TXCD RAM 7 6, 8, 9, 10;
CALLDATALOAD if CALLER = 0 TXCD stack 8 6, 8, 9, 11;

Figure 3.13: There are 8 possible data source and target configurations. The last row (i.e.
CALLDATALOAD instructions involving transaction call data) is the only configuration not involving
RAM directly. Their implementation will still involve RAM: we use the 0th execution context’s mem-
oryless RAM as a pad to store 1, 2 or even 3 limbs obtained from transaction call data.

Instruction data donor data recipient
SHA3 RAM (current context) SHA3
MSTORE8 stack RAM (current context)
MSTORE stack RAM (current context)
MLOAD RAM (current context) stack
CALLDATALOAD if CALLER 6= 0 RAM (caller context) stack
CALLDATALOAD if CALLER = 0 transaction call data stack
CALLDATACOPY if CALLER 6= 0 RAM (caller context) RAM (current context)
CALLDATACOPY if CALLER = 0 transaction call data RAM (current context)
REVERT RAM (current context) RAM (caller context)
RETURN if CTYPE = 0 RAM (current context) RAM (caller context)
RETURN if CTYPE = 1 RAM (current context) ROM
CREATE(2) RAM (current context) ROM
(EXT)CODECOPY ROM RAM (current context)
RETURNDATACOPY RAM (returner context) RAM (current context)
LOG0-LOG4 RAM (current context) logs

There are thus 8 possibilities in terms of data movement: To locate data within these data sources we
require:

RAM: a context number and a limb offset; e.g. the current execution context number, that of the
caller or that of the returner;

LOGs: a log number and a limb offset;

ROM: a code fragment number, the boolean IS_INIT (indicating whether the code fragment to be
read from or compared to a RAM segment) is initialization code or (currently) deployed code,
and a limb offset;

Stack: nothing: just the high and low part of a value read from or written to the current execution
context’s stack.

3.6.2 Which opcodes require what surgeries
MSTORE8: we work with 1 source term (the low part of the stack value) and 1 target term (from the

current RAM):

108

1. type 5;

MSTORE: we work with 2 source terms (the high and low part of the stack value) and 2 or 3 target
terms (from the current RAM):

1. type 3 (fast operation),
2. type 4 (slow operation);

MLOAD: we work with a 2 or 3 source terms (from the current RAM) and 2 target terms (the high and
low part of the stack value):

1. either type 1 (fast operation),
2. or type 2 (slow operation);

CALLDATALOAD: if CALLER 6= 0 and OFFSET + 32 ≤ CDS we work with a 2 or 3 source terms (from
the current RAM) and 2 target terms (the high and low part of the stack value):

1. either type 1 (fast operation),
2. or type 2 (slow operation);

otherwise the operation is split into two sub operations using either 1 or 2 source terms and a 1
target term (the high / low part of the stack value in that order):

1. type 6 twice (2): 66
2. type 7 (full) twice (3): 77,
3. type 6 followed by 9 (1): 69,
4. type 6 followed by 11 (2): 6b,
5. type 7 (full) followed by 11 (2): 72,
6. type 7 (full) followed by 12 (3): 7c,
7. type 11 followed by type 9 (1): b9,
8. type 12 followed by type 9 (2): c9,
9. type 9 twice: 99;

the number in parenthesis indicates the number of loads from transaction calldata required when
CALLER = 0;

LOGs and RETURN for contract deployment: —

1. a sequence of 6’s potentially followed by 11: 6∗(b)
2. a sequence of 7’s potentially followed by an 11 or 12: 7∗(b/c)

RETURN and REVERT: 1. potential 8 followed by a sequence of 6’s potentially followed by an 8:
(8)6∗(8),

2. potential 8 followed by a sequence of 7’s potentially followed by an 8: (8)7∗(8)

RETURNDATACOPY: we work with a single source term:

1. a sequence of 6’s potentially followed by an 8: 6∗(8),
2. a sequence of 7’s potentially followed by an 8: 7∗(8) (the last 7 may be incomplete if there

is no 8)

CALLDATACOPY: we work with a single source term (from TRANSACTION_CALLDATA_PADDED or
the CALLER’s RAM) and 1 or 2 target terms in RAM:

109

1. potential first completion (8) followed by quick copies 6∗ followed by potential loading a
piece followed by potentially completing the limb with 0’s (8 or 8a) followed potentially by
many full zero limbs (9∗) followed by potentially some zeros (a): (8)6∗(8a/8)(9∗)(a);

2. potential first completion (8) followed by slow compies (d)∗ followed potentially by some
zero padding (a) followed potentially by fast zeros (9∗) followed potentially by some zeros
(a), i.e. (8)(d∗)(a)(9∗)(a);

(EXT)CODECOPY: we work with a single source term (from ROM) 1 or 2 target terms in RAM:

1. a sequence of 6’s potentially followed by 9’s (padding is part of the bytecode) and/or a
single 10: 6∗9∗(10)

2. a sequence of 13’s potentially followed by a 10 and potentially 9’s and potentially a 10:
d∗(a9∗(10))

3.6.3 RAM to RAM
RAM limb excision

The surgery described below is used by instructions writing to RAM where the source data may run
out of bounds. In other words:

1. CALLDATACOPY,

2. RETURNDATACOPY,

3. CODECOPY,

4. EXTCODECOPY.
We label it RamLimbExcision. It is comprised of the following constraints:

1. Wiring constraints: 

CN_Ai = 0
CN_Bi = 〈CN_T〉i
CN_Ci = 0
INDEX_Ai = 0
INDEX_Bi = 〈TLO〉i
INDEX_Ci = 0
VAL_Aν

i = VAL_Ai = 0
VAL_Cν

i = VAL_Ci = 0

2. Surgery constraint:

Excision
(

VAL_B,VAL_Bν ;BYTE_B;ACC_1;
POW_256_1; 〈TBO〉; 〈SIZE〉; [[1]], [[2]];

)
Chunk sliding no overlap

This subsection defines the RamToRamSlideChunk surgery. It is comprised of the following constraints:
1. Wiring constraints: 

CN_Ai = 〈CN_S〉i
CN_Bi = 〈CN_T〉i
CN_Ci = 0
INDEX_Ai = 〈SLO〉i
INDEX_Bi = 〈TLO〉i
INDEX_Ci = 0
VAL_Aν

i = VAL_Ai

VAL_Cν
i = VAL_Ci = 0

110

2. Surgery constraint:

[1 Partial⇒ 1]


VAL_A,VAL_B,VAL_Bν ;

BYTE_A,BYTE_B;
ACC_1,ACC_2;POW_256_1;
〈SBO〉, 〈TBO〉; 〈SIZE〉;

[[1]], [[2]], [[3]], [[4]];


Chunk sliding with overlap

The surgery RamToRamSlideOverlappingChunk below is comprised of the following constraints:

1. Wiring constraints: 

CN_Ai = 〈CN_S〉i
CN_Bi = 〈CN_T〉i
CN_Ci = 〈CN_T〉i
INDEX_Ai = 〈SLO〉i
INDEX_Bi = 〈TLO〉i
INDEX_Ci = 〈TLO〉i + 1
VAL_Aν

i = VAL_Ai

2. Surgery constraint:

[1 Partial⇒ 2]


VAL_A,VAL_B,VAL_C,VAL_Bν ,VAL_Cν ;

BYTE_A,BYTE_B,BYTE_C;
ACC_1,ACC_2,ACC_3,ACC_4;

POW_256_1; 〈SBO〉, 〈TBO〉, 〈SIZE〉;
[[1]], [[2]], [[3]], [[4]], [[5]];


3.6.4 Exogenous data to RAM
Chunk sliding no overlap

The surgery ExoToRamSlideChunk below is used by

1. CALLDATACOPY in a context that is the root context of a transaction,

2. CODECOPY and EXTCODECOPY,

It is comprised of the following constraints:

1. Wiring constraints: 

CN_Ai = 0
CN_Bi = 〈CN_T〉i
CN_Ci = 0
INDEX_Ai = 0
INDEX_Bi = 〈TLO〉i
INDEX_Ci = 0
INDEX_Xi = 〈SLO〉i
VAL_Aν

i = VAL_Ai = 0
VAL_Cν

i = VAL_Ci = 0

2. Surgery constraint:

[1 Partial⇒ 1]


〈VAL_X〉,VAL_B,VAL_Bν ;BYTE_X,BYTE_B;

ACC_1,ACC_2;POW_256_1
〈SBO〉, 〈TBO〉; 〈SIZE〉;

[[1]], [[2]], [[3]], [[4]];


111

Chunk sliding with overlap

The surgery ExoToRamSlideOverlappingChunk below is used by

1. CALLDATACOPY in a context that is the root context of a transaction,

2. CODECOPY and EXTCODECOPY.

It is comprised of the following constraints:

1. Wiring constraints: 

CN_Ai = 0
CN_Bi = 〈CN_T〉i
CN_Ci = 〈CN_T〉i
INDEX_Ai = 0
INDEX_Bi = 〈TLO〉i
INDEX_Ci = 〈TLO〉i + 1
INDEX_Xi = 〈SLO〉i
VAL_Aν

i = VAL_Ai = 0

2. Surgery constraint:

[1 Partial⇒ 2]


〈VAL_X〉,VAL_B,VAL_C,VAL_Bν ,VAL_Cν ;

BYTE_X,BYTE_B,BYTE_C;
ACC_1,ACC_2,ACC_3,ACC_4;

POW_256_1; 〈SBO〉, 〈TBO〉, 〈SIZE〉;
[[1]], [[2]], [[3]], [[4]], [[5]];


3.6.5 RAM to exogenous data
Use cases

The surgeries FullExoFromTwo, PaddedExoFromTwo and PaddedExoFromOne presented below are used
in the following memory instructions:

1. LOG0-LOG4 instructions,

2. CREATE and CREATE2 instructions,

3. RETURN in a deployment context which is (temporarily) successful,

4. SHA3

Left aligned padded chunk from one RAM limb

The surgery PaddedExoFromOne below is comprised of the following constraints:

1. Wiring constraints: 

CN_Ai = 〈CN_S〉i
CN_Bi = 0
CN_Ci = 0
INDEX_Ai = 〈SLO〉i
INDEX_Bi = 0
INDEX_Ci = 0
INDEX_Xi = 〈TLO〉i
VAL_Aν

i = VAL_Ai

VAL_Bν
i = VAL_Bi = 0

VAL_Cν
i = VAL_Ci = 0

112

2. Surgery constraint:

[1⇒ 1 Padded]


VAL_A, 〈VAL_X〉;BYTE_A;

ACC_1;POW_256_1;
〈SBO〉; 〈SIZE〉;
[[1]], [[2]], [[3]];


Left aligned padded chunk from two RAM limbs

The surgery PaddedExoFromTwo is comprised of the following constraints:

1. Wiring constraints: 

CN_Ai = 〈CN_S〉i
CN_Bi = 〈CN_S〉i
CN_Ci = 0
INDEX_Ai = 〈SLO〉i
INDEX_Bi = 〈SLO〉i + 1
INDEX_Ci = 0
INDEX_Xi = 〈TLO〉i
VAL_Aν

i = VAL_Ai

VAL_Bν
i = VAL_Bi

VAL_Cν
i = VAL_Ci = 0

2. Surgery constraint:

[2⇒ 1 Padded]


VAL_A,VAL_B, 〈VAL_X〉;

BYTE_A,BYTE_B;
ACC_1,ACC_2;

POW_256_1,POW_256_2;
〈SBO〉, 〈SIZE〉;
[[1]], [[2]], [[3]], [[4]];


Full exo limb from neighboring limbs

The surgery FullExoFromTwo is comprised of the following constraints:

1. Wiring constraints: 

CN_Ai = 〈CN_S〉i
CN_Bi = 〈CN_S〉i
CN_Ci = 0
INDEX_Ai = 〈SLO〉i
INDEX_Bi = 〈SLO〉i + 1
INDEX_Ci = 0
INDEX_Xi = 〈TLO〉i
VAL_Aν

i = VAL_Ai

VAL_Bν
i = VAL_Bi

VAL_Cν
i = VAL_Ci = 0

2. Surgery constraint:

[2⇒ 1 Padded]


VAL_A,VAL_B, 〈VAL_X〉;

BYTE_A,BYTE_B;
ACC_1,ACC_2;

POW_256_1,POW_256_2;
〈SBO〉, 〈SIZE〉;
[[1]], [[2]], [[3]], [[4]];


113

3.6.6 Stack to RAM
Full transfer

The following surgery, which we label FullStackToRAM , is used by the MSTORE instruction when offsets
aren’t aligned (i.e. 〈TBO〉 6= 0).

1. cabling constraints: 

CN_Ai = 〈CN_T〉i
CN_Bi = 〈CN_T〉i
CN_Ci = 〈CN_T〉i
INDEX_Ai = 〈TLO〉i
INDEX_Bi = 〈TLO〉i + 1

INDEX_Ci = 〈TLO〉i + 2

2. surgery constraint:

[2 Full⇒ 3]


VAL_A,VAL_C; 〈VAL hi〉, 〈VAL lo〉;

VAL_Aν ,VAL_Bν ,VAL_Cν ;
BYTE_A,BYTE_C,BYTE_HI,BYTE_LO;

ACC_1,ACC_2,ACC_3,
ACC_4,ACC_5,ACC_6;

POW_256_1; 〈TBO〉; [[1]], [[2]];


Byte transfer

The following surgery is used by the MSTORE8 instruction alone.

1. cabling constraints: 

CN_Ai = 〈CN_T〉i
CN_Bi = 0

CN_Ci = 0

INDEX_Ai = 〈TLO〉
INDEX_Bi = 0

INDEX_Ci = 0

VAL_Bν = VAL_B = 0

VAL_Cν = VAL_C = 0

2. surgery constraint:

ByteSwap


〈VAL lo〉,VAL_A,VAL_Aν ;

BYTE_LO,BYTE_A;
ACC_1,POW_256_1;
〈TBO〉, [[1]], [[2]];


In their entirety we dub this LsbFromStackToRAM

3.6.7 RAM to stack: aligned offsets
Fast high / padded low

The surgery described below is used by CALLDATALOAD in a context that isn’t the root context when
the 32 bytes to retrieve from call data go out of bounds (but more than 16 bytes are in range). We
label it FirstFastSecondPadded. It is comprised of the following constraints:

114

1. Wiring constraints: 

CN_Ai = 〈CN_S〉i
CN_Bi = 〈CN_S〉i
CN_Ci = 0
INDEX_Ai = 〈SLO〉i
INDEX_Bi = 〈SLO〉i + 1
INDEX_Ci = 0
VAL_Aν

i = VAL_Ai

VAL_Bν
i = VAL_Bi

VAL_Cν
i = VAL_Ci = 0

〈VAL hi〉i = VAL_Ai

2. Surgery constraint:

[1⇒ 1 Padded]

 VAL_B, 〈VAL lo〉;BYTE_B;
ACC_1;POW_256_1;
0, 〈SIZE〉; [[1]], [[2]];


Note. The zero in the middle indicate the “zero column”. The column [[1]] will be equal to one along
any counter-cycle where this constraint is active.

Padded high / zero low

The surgery described below is used by CALLDATALOAD in a context that isn’t the root context when
the 32 bytes to retrieve from call data go out of bounds (with fewer than 16 bytes being in range). We
label it FirstPaddedSecondZero. It is comprised of the following constraints:

1. Wiring constraints: 

CN_Ai = 〈CN_S〉i
CN_Bi = 0
CN_Ci = 0
INDEX_Ai = 〈SLO〉i
INDEX_Bi = 0
INDEX_Ci = 0
VAL_Aν

i = VAL_Ai

VAL_Bν
i = VAL_Bi = 0

VAL_Cν
i = VAL_Ci = 0

〈VAL lo〉i = 0

2. Surgery constraint:

[1⇒ 1 Padded]

 VAL_A, 〈VAL hi〉;BYTE_A;
ACC_1;POW_256_1;

0, 〈SBO〉; [[1]], [[2]];


Note. The same comment as before applies.

3.6.8 RAM to stack: non-aligned offsets
Purpose

The surgeries described in this subsection:

115

1. Exceptional_RamToStack_3To2Full

2. NA_RamToStack_3To2Full

3. NA_RamToStack_3To2Padded

4. NA_RamToStack_2To2Padded

5. NA_RamToStack_2To1FullAndZero

6. NA_RamToStack_2To1PaddedAndZero

7. NA_RamToStack_1To1PaddedAndZero

All of these surgeries are used almost exclusively by CALLDATALOAD (except for NA_RamToStack_3To2Full
which MLOAD also uses). It is a surprising fact that the arithmetization of the CALLDATALOAD instruction
turns out feature so many subcases in our system. We go into more details about what makes this
instruction particularly nasty in section 3.4.1.

Exceptional three RAM limbs two full stack elements

The surgery described below is used exclusively by CALLDATALOAD in a root context, i.e. after loading
from transaction call data into the 0th execution context’s RAM with the 〈ERF〉 = 1. We label it
Exceptional_RamToStack_3To2Full. It is comprised of the following constraints:

1. Wiring constraints: 

CN_Ai = 0
CN_Bi = 0
CN_Ci = 0
INDEX_Ai = 0
INDEX_Bi = 0
INDEX_Ci = 0
VAL_Aν

i = 0
VAL_Bν

i = 0
VAL_Cν

i = 0
〈FAST〉i = 0
〈ERF〉i = 0

2. Surgery constraint:

[3⇒ 2 Full]


VAL_A,VAL_B,VAL_C; 〈VAL hi〉, 〈VAL lo〉;

BYTE_A,BYTE_B,BYTE_C;
[[1]], [[2]];POW_256_1; 〈SBO〉;

ACC_1,ACC_2,ACC_3,ACC_4;


Note. Exceptional_RamToStack_3To2Full will only ever be called after some preliminary loading
from transaction call data to the 0th execution context’s RAM. Recall that these operations set the flag
〈ERF〉 = 1 which allows the 0th execution context’s RAM to retain information for a few consecutive
(fast) micro instructions.

Three RAM limbs two full stack elements

The surgery described below is used by MLOAD under all circumstances, but also by CALLDATALOAD. Let
us be precise about the second use case: it applies when both

1. the context executing CALLDATALOAD isn’t the root context of a transaction,

2. the requested 32 bytes are all within the CALLER’s RAM segment that it designated as call data
in the CALL instruction.

We label it NA_RamToStack_3To2Full. It is comprised of the following constraints:

116

1. Wiring constraints: 

CN_Ai = 〈CN_S〉i
CN_Bi = 〈CN_S〉i
CN_Ci = 〈CN_S〉i
INDEX_Ai = 〈SLO〉i
INDEX_Bi = 〈SLO〉i + 1
INDEX_Ci = 〈SLO〉i + 2
VAL_Aν

i = VAL_Ai

VAL_Bν
i = VAL_Bi

VAL_Cν
i = VAL_Ci

〈FAST〉i = 0
〈ERF〉i = 0

2. Surgery constraint:

[3⇒ 2 Full]


VAL_A,VAL_B,VAL_C; 〈VAL hi〉, 〈VAL lo〉;

BYTE_A,BYTE_B,BYTE_C;
[[1]], [[2]];POW_256_1; 〈SBO〉;

ACC_1,ACC_2,ACC_3,ACC_4;



Figure 3.14: Representation of the constraints implemented by NA_RamToStack_3To2Full.

Three RAM limbs a full stack element and a padded one

The surgery described below is used by CALLDATALOAD: it applies when

1. the context executing CALLDATALOAD isn’t the root context of a transaction,

2. the requested 32 bytes overflow the CALLDATA_SIZE (i.e. zero padding is required),

3. the relevant bytes span 3 limbs from the CALLER context.

(The CALLER context number is passed down in 〈CN_S〉 by the RAM preprocessor.) We label this
surgery NA_RamToStack_3To2Padded. It is comprised of the following constraints:

117

1. Wiring constraints: 

CN_Ai = 〈CN_S〉i
CN_Bi = 〈CN_S〉i
CN_Ci = 〈CN_S〉i
INDEX_Ai = 〈SLO〉i
INDEX_Bi = 〈TLO〉i + 1
INDEX_Ci = 〈TLO〉i + 2
VAL_Aν

i = VAL_Ai

VAL_Bν
i = VAL_Bi

VAL_Cν
i = VAL_Ci

〈FAST〉i = 0
〈ERF〉i = 0

2. Surgery constraint:

[2⇒ 1 Full]


VAL_A,VAL_B; 〈VAL hi〉;

BYTE_A,BYTE_B;
[[1]], [[2]];POW_256_1; 〈SBO〉;

ACC_1,ACC_2;


and

[2⇒ 1 Padded]


VAL_B,VAL_C; 〈VAL lo〉;

BYTE_B,BYTE_C;
ACC_3,ACC_4;

POW_256_1,POW_256_2;
〈SBO〉,SIZE; [[1]], [[3]], [[2]], [[4]];


Note: [[1]], [[2]] are used twice. Also, unless I’m mistaken the order [[1]], [[3]], [[2]], [[4]] is the
right one.

Figure 3.15: Representation of the constraints implemented by NA_RamToStack_3To2Padded.

Two RAM limbs a full stack element and a padded one

The surgery described below is used by CALLDATALOAD: it applies when

1. the context executing CALLDATALOAD isn’t the root context of a transaction,

2. the requested 32 bytes overflow the CALLDATA_SIZE (i.e. zero padding is required),

3. the relevant bytes span 2 limbs from the CALLER context.

(The CALLER context number is passed down in 〈CN_S〉 by the RAM preprocessor.) We label this
surgery NA_RamToStack_2To2Padded. It is comprised of the following constraints:

118

1. Wiring constraints: 

CN_Ai = 〈CN_S〉i
CN_Bi = 〈CN_S〉i
CN_Ci = 0
INDEX_Ai = 〈SLO〉i
INDEX_Bi = 〈TLO〉i + 1
INDEX_Ci = 0
VAL_Aν

i = VAL_Ai

VAL_Bν
i = VAL_Bi

VAL_Cν
i = VAL_Ci = 0

〈FAST〉i = 0
〈ERF〉i = 0

2. Surgery constraint:

[2⇒ 1 Full]


VAL_A,VAL_B; 〈VAL hi〉;

BYTE_A,BYTE_B;
[[1]], [[2]];POW_256_1; 〈SBO〉;

ACC_1,ACC_2;


and

[1⇒ 1 Padded]


VAL_B; 〈VAL lo〉;

BYTE_B;
ACC_3;POW_256_2;
〈SBO〉,SIZE; [[1]], [[3]], [[4]];


Note: [[1]] is used twice.

Figure 3.16: Representation of the constraints implemented by NA_RamToStack_2To2Padded.

Two RAM limbs a full stack element and zero

The surgery described below is used by CALLDATALOAD: it applies when

1. the context executing CALLDATALOAD isn’t the root context of a transaction,

2. the requested 32 bytes overflow the CALLDATA_SIZE (i.e. zero padding is required),

3. precisely 16 bytes of the requested bytes are in the call data,

4. the relevant bytes span 2 limbs from the CALLER context.

119

(The CALLER context number is passed down in 〈CN_S〉 by the RAM preprocessor.) We label this
surgery NA_RamToStack_2To1FullAndZero. It is comprised of the following constraints:

1. Wiring constraints: 

CN_Ai = 〈CN_S〉i
CN_Bi = 〈CN_S〉i
CN_Ci = 0
INDEX_Ai = 〈SLO〉i
INDEX_Bi = 〈SLO〉i + 1
INDEX_Ci = 0
VAL_Aν

i = VAL_Ai

VAL_Bν
i = VAL_Bi

VAL_Cν
i = VAL_Ci = 0

〈VAL lo〉i = 0
〈FAST〉i = 0
〈ERF〉i = 0

2. Surgery constraint:

[2⇒ 1 Full]


VAL_A,VAL_B; 〈VAL hi〉;

BYTE_A,BYTE_B;
[[1]], [[2]];POW_256_1; 〈SBO〉;

ACC_1,ACC_2;


Note: we set 〈VAL lo〉i = 0 in the wiring constraints.

Figure 3.17: Representation of the constraints implemented by NA_RamToStack_3To2Full.

Two RAM limbs a padded stack element and zero

The surgery described below is used by CALLDATALOAD: it applies when

1. the context executing CALLDATALOAD isn’t the root context of a transaction,

2. the requested 32 bytes overflow the CALLDATA_SIZE (i.e. zero padding is required),

3. fewer than 16 bytes of the requested bytes are in the call data,

4. the relevant bytes span 2 limbs from the CALLER context.

(The CALLER context number is passed down in 〈CN_S〉 by the RAM preprocessor.) We label this
surgery NA_RamToStack_2To1PaddedAndZero. It is comprised of the following constraints:

120

1. Wiring constraints: 

CN_Ai = 〈CN_S〉i
CN_Bi = 〈CN_S〉i
CN_Ci = 0
INDEX_Ai = 〈SLO〉i
INDEX_Bi = 〈SLO〉i + 1
INDEX_Ci = 0
VAL_Aν

i = VAL_Ai

VAL_Bν
i = VAL_Bi

VAL_Cν
i = VAL_Ci = 0

〈VAL lo〉i = 0
〈FAST〉i = 0
〈ERF〉i = 0

2. Surgery constraint:

[2⇒ 1 Padded]


VAL_A,VAL_B; 〈VAL hi〉;

BYTE_A,BYTE_B;
ACC_1,ACC_2;POW_256_1,POW_256_2;

〈SBO〉,SIZE; [[1]], [[2]], [[3]], [[4]];


Note: we set 〈VAL lo〉i = 0 in the wiring constraints.

Figure 3.18: Representation of the constraints implemented by NA_RamToStack_2To1PaddedAndZero.

One RAM limb a padded stack element and zero

The surgery described below is used by CALLDATALOAD: it applies when

1. the context executing CALLDATALOAD isn’t the root context of a transaction,

2. the requested 32 bytes overflow the CALLDATA_SIZE (i.e. zero padding is required),

3. fewer than 16 bytes of the requested bytes are in the call data,

4. the relevant bytes span 1 limb from the CALLER context.

(The CALLER context number is passed down in 〈CN_S〉 by the RAM preprocessor.) We label this
surgery NA_RamToStack_1To1PaddedAndZero. It is comprised of the following constraints:

121

1. Wiring constraints: 

CN_Ai = 〈CN_S〉i
CN_Bi = 0
CN_Ci = 0
INDEX_Ai = 〈SLO〉i
INDEX_Bi = 0
INDEX_Ci = 0
VAL_Aν

i = VAL_Ai

VAL_Bν
i = VAL_Bi = 0

VAL_Cν
i = VAL_Ci = 0

〈VAL lo〉i = 0
〈FAST〉i = 0
〈ERF〉i = 0

2. Surgery constraint:

[1⇒ 1 Padded]

 VAL_A; 〈VAL hi〉;BYTE_A;
ACC_1;POW_256_1;
〈SBO〉,SIZE; [[1]], [[2]], [[3]];


Note: we set 〈VAL lo〉i = 0 in the wiring constraints.

Figure 3.19: Representation of the constraints implemented by NA_RamToStack_1To1PaddedAndZero.

3.7 Consistency constraints
3.7.1 Call stack consistency
The execution trace carries meta information about the call stack and about offsets and sizes for call
data and return data. When returning or reverting to a previous context we must recuperate said
meta information. The constraints here ensure the validity of this information. We shall reorder some
columns accoring to the lexicgraphic order on the pair(

CONTEXT_NUMBER,RAM_TIMESTAMP
)

We will need the following reordered columns:

122

1. [CN]
�

2. [�]
�

3. [CALLER]�

4. [CALLDATA_OFFSET]�

5. [CALLDATA_SIZE]�

6. [RETURNER]�

7. [RETURNDATA_OFFSET]�

8. [RETURNDATA_SIZE]�

where by definition
(
[CN]

�

, [�]
�
)
is lexicographically sorted. We impose the following consistency

constraints:

1. call-data-meta-information consistency: if [CN]
�

i+1 = [CN]
�

i then
[CALLER]�i+1 = [CALLER]�i
[CALLDATA_OFFSET]�i+1 = [CALLDATA_OFFSET]�i
[CALLDATA_SIZE]�i+1 = [CALLDATA_SIZE]�i

2. return-data-meta-information consistency: if
(

[CN]
�

i+1 = [CN]
�

i and [RETURNER]�i+1 =

[RETURNER]�i
)

then{
[RETURNDATA_OFFSET]�i+1 = [RETURNDATA_OFFSET]�i
[RETURNDATA_SIZE]�i+1 = [RETURNDATA_SIZE]�i

3.7.2 Concatenated columns and order
We introduce several interleaved columns:

1. CN_ABC := CN_A�CN_B�CN_C,

2. INDEX_ABC := INDEX_A� INDEX_B� INDEX_C

3. 〈µRST〉� 3 := 〈µRST〉�〈µRST〉�〈µRST〉

4. VAL_ABC := VAL_A�VAL_B�VAL_C

5. VAL_ABCν := VAL_Aν �VAL_Bν �VAL_Cν

We introduce their reordered variants: [CN_ABC]� , [INDEX_ABC]� ,
[
〈µRST〉� 3

]� , [VAL_ABC]� ,
[VAL_ABCν]

� where reordering is done according to the lexicographic order on the triple

(CONTEXT_NUMBER, INDEX, 〈µRST〉)

in other words, the reordering is such that(
[CN_ABC]� , [INDEX_ABC]� ,

[
〈µRST〉� 3

]
�
)

are lexicographically ordered.

123

3.7.3 Memory consistency constraints

1. There are no constraints when [CN_ABC]�i = 0

2. if [CN_ABC]�i 6= 0:

(a) if 

[CN_ABC]�i+1 = [CN_ABC]�i
and

[INDEX_ABC]�i+1 = [INDEX_ABC]�i
and[
〈µRST〉� 3

]�
i+1
6=

[
〈µRST〉� 3

]�
i

then [VAL_ABC]�i+1 = [VAL_ABCν
i]

�

(b) if 
[CN_ABC]�i+1 6= [CN_ABC]�i

or
[INDEX_ABC]�i+1 6= [INDEX_ABC]�i

then [VAL_ABC]�i+1 = 0.

In other words after reordering VAL_ABC and VAL_ABCν as explained above we have, for constant
[CN_ABC]� and [INDEX_ABC]�

124

[CN_ABC]� [INDEX_ABC]�
[
〈µRST〉� 3

]�
[VAL_ABC]� [VAL_ABCν]

�

0 0 ? 28 ? ?

1 0 ? 55 ? ?

2 0 ? 117 ? ?

...
...

...
...

...
...

i c k 12 0 ♠

i+ 1 c k 19 ♠ ?

i+ 2 c k 20 ? ���

i+ 3 c k 38 ��� ♥

i+ 4 c′ l 23 0 †

i+ 5 c′ l 27 † ♦♦♦

i+ 6 c′ l + 1 24 0 ./

i+ 7 c′ l + 1 27 ./ ‡

i+ 8 c′ l + 1 33 ‡ ‡

i+ 9 c′ l + 1 36 ‡ ♣

i+ 10 c′ l + 1 37 ♣ }}}

i+ 11 c′ l + 2 25 0 FFF

i+ 12 c′ l + 2 26 FFF NNN

i+ 13 c′ l + 2 27 NNN]

i+ 14 c′ l + 2 33]]

i+ 15 c′ l + 2 43] ^̂̂

...
...

...
...

...
...

Figure 3.20: 〈MICRO_RAM_STAMP〉 = 27 appears thrice (as is to be expected) and the three rows in
question (i+ 5, i+ 7, i+ 13) the values are taken from the same execution context (c′) in consecutive
limbs (l, l + 1, l + 2) and the values in RAM are changed(† ♦♦♦, ./ ‡ andNNN]). This is
compatible with the 27th micro RAM operation being a non aligned MSTORE (in theory it could also
be part of a non aligned (EXT)CODECOPY.) In a similar vein, note that the 33rd micro RAM operation
(i.e. 〈MICRO_RAM_STAMP〉 = 33) touches two consecutive RAM locations (l + 2 and l + 2) in that
same execution context c′ without modifying their values (‡ ‡ and]]). This could be part of
an aligned or non aligned logging operation, an aligned or non aligned MLOAD, a successful RETURN in a
deployment context (CTYPE = 1) among other options. (If we wanted to more information we would
have to find what other context is activated at 〈MICRO_RAM_STAMP〉 = 33, or better yet: consult
the non reordered exeuction trace).

125

Chapter 4

ROM

4.1 The ROM module
4.1.1 Introduction
The ROM contains the bytecodes of the contracts used within a batch of transaction as well as some
associated metadata such as code size and code hash. Its main role in the overall design is to provide
the Main Execution Trace with the correct sequence of instructions. Most of the arithmetization below
focuses on building the ROM as a seqence of padded byte codes and of extracting the correct push
values from it (i.e. the X-byte long arguments of actual PUSH_X instructions).

There are three kinds of accesses to bytecode that the ROM deals with, with contract deployment
being subdivided into 1 or 2 phases (since deployments may fail):

1. loading auxiliary data associated to an address (i.e. its code hash (CH) and code size (CS)) for
EXTCODEHASH and EXTCODESIZE instructions;

2. loading the full bytecode of an already deployed smart contract to run it or to EXTCODECOPY from
it (or both);

3. deploying a smart contract through a transaction or CREATE(2):

(a) loading the init code into ROM;
(b) for successful deployments loading the bytecode that will be deployed at the relevant address

into ROM.

The EXTCODEHASH and EXTCODESIZE instructions force a slight technical difficulty upon us. EXTCODEHASH
was added to the EVM instruction set in EIP 1052 to avoid costly EXTCODECOPY’s. Loading bytecodes
into ROM to hash them once more would be contrary to its purpose of these cheap instructions. Since
the Ethereum state is aware of code hashes this isn’t too bad. However, the Ethereum state is unaware
of a deployed bytecode’s code size. Since EXTCODESIZE is a cheap instruction and hashing is expensive
in the zk-EVM, we cannot justify a code’s size by loading it into ROM, hashing it and comparing
the result to the code hash. The CODEHASH and CODESIZE are thus verified against an auxiliary
mapping map[address](hash, int) rather than against the state. This mapping must be updated
with every successful contract creation.

4.1.2 ROM specific terms
We collect in this sections pointers to definitions of ROM specific terms: counter-constant columns
are defined in section 4.1.4, fully-counter-constant columns are defined in section 4.1.4, address-
constant columns are defined in section 4.1.4, code-fragment-constant columns are defined in
section 4.1.4.

126

https://eips.ethereum.org/EIPS/eip-1052

Note that by construction

address-cnst. =⇒ code-fragment-cnst. =⇒ fully-counter-cnst. =⇒ counter-cnst.

In essence: address-constant columns don’t change until the address changes, (slightly simplifying)
code-fragment constant columns can only change once per address, (slightly simplifying) fully-counter-
constant columns can only change every 32 rows and (slightly simplifying) counter-constant columns
can only change every 16 rows.

4.1.3 Trace columns
The first three columns differentiate between the three cases highlighted in the introduction according
to the following table:

LOAD INIT DH
1. loading CS
and CH only 0 0 0

2. loading already
deployed bytecode 1 0 0

3.a) init code 1 1 0
3.b) bytecode
being deployed 1 0 1

1. IS_LOADED: a binary, address-constant column that distinguishes between code fragments that
are being loaded to ROM in their entirety and code fragments of which we only import their
code hash and code size into ROM; abbreviated to LOAD;

2. IS_INITCODE: a binary, code-fragment-constant colum; INIT = 1 for init code and INIT = 0 for
all deployed (or about to be successfully deployed) code; abbreviated to INIT;

3. DO_HASH: a binary, code-fragment-constant column; equals 1 only for bytecode that’s been
successfully deployed within the current batch, thus indicating which bytecodes must be hashed;
abbreviated to DH;

Hashing the bytecode should happen only once: when a contract is deployed for the first time and
we need to insert its code hash into the state. Tagging these initial deployments is the purpose of
DO_HASH.

The following columns are used for book-keeping of different code fragments and addresses within
the ROM.

4. SC_ADDRESS_HIGH and SC_ADDRESS_LOW: address-constant columns; contain the high
and low parts of the address associated with the bytecode currently being loaded into ROM;
abbreviated to ADDR hi and ADDR lo respectively;

5. ADDRESS_INDEX: address-constant column; a column that starts at 0 and increases by 1 with
every new address encountered in the ROM; abbreviated to AI;

6. CODE_FRAGMENT_INDEX: code-fragment-constant column; a refinement of ADDRESS_IN-
DEX: increases by 1 whenever the address changes or the IS_INITCODE changes; abbreviated to
CFI;

In other words, AI counts the number of different addresses in ROM while CFI counts the number of
code fragments present in ROM (regardless of whether they are fully loaded into ROM or only their
metadata is loaded in.) A given address in ROM can be associated to either 1 or 2 code fragments.

The following columns are for orientation within a given code fragment. They are used to construct
LACS hi and LACS lo (see below) incrementally and to figure out at what point to switch from building
LACS hi to bulding LACS lo and when to reset the process.

127

7. COUNTER: a periodic counter; if LOAD = 0 we have CT = 0; if LOAD = 1 it counts up from 0
to 15 in increments of 1 and resets; such “cycles” come in pairs (see CYC); abbreviated to CT;

8. CYCLIC_BIT: a counter-constant binary column; equals to 0 if LOAD = 0; otherwise it flips at
the onset of every new COUNTER-cycle; abbreviated to CYC;

The following columns provide “meta data” associated with a bytecode: its length, its hash but also
the big endian concatenation of (bytes from the padded bytecode) into EVM words (split into high
and low parts): LACS hi and LACS lo respectively. These are computed for two reasons:

• for (EXT)CODECOPY’s it’s simpler to be able to pull left shifted prefixes of concatenations of bytes
from the (padded) bytecode rather than individual bytes; this format is compatible with the
Parent/Child architecture of RAM;

• for storing the bytecode (and thus easier retrieval later) it is simpler to store EVM words of
(padded) bytecode (while remembering the length of the original bytecode, of course)

9. CODESIZE: a code-fragment-constant column containing the code size of the bytecode currently
being loaded into ROM; abbreviated to CS;

10. CODEHASH_HIGH and CODEHASH_LOW: code-fragment-constant columns containing the (high
and low part of the) code hash of the bytecode currently being loaded into ROM; abbreviated
to CH hi and CH lo respectively;

11. LEFT_ALIGNED_CODESUFFIX_HIGH and LEFT_ALIGNED_CODESUFFIX_LOW: high and low
part of the EVM word obtained by left-shifting (by CT + 16CYC bytes) the concatenation of
the opcodes in a full COUNTER-cycle’s worth of bytecode; see figure ?? for an explanation;
abbreviated to LACS hi and LACS lo respectively;

The following columns relate to the PUSH_X instructions that require particular constraints to work
properly.

12. IS_PUSH: instruction decoded binary flag column that lights up for push instructions; abbrevi-
ated to IP;

13. IS_PUSH_DATA: binary flag that lights up for the X rows following a PUSH_X instruction i.e.
while PPO 6= 0; abbreviated to IPD; this flag selects those bytes from the bytecode that contribute
to a push instruction’s PUSH_VALUE_HIGH or PUSH_VALUE_LOW; it also sets the OPCODE
of said lines to INVALID; abbreviated to IPD;

14. PUSH_PARAMETER: instruction decoded column that contains X for PUSH_X instructions and
0 for non push instructions; abbreviated to PP;

15. PUSH_PARAMETER_OFFSET: following a PUSH instruction, this counts down from PP down to
0; abbreviated to PPO;

16. PUSH_VALUE_HIGH and PUSH_VALUE_LOW: high and low part of the value that a push
instruction pushes on stack; abbreviated to PV hi and PV lo respectively;

17. PUSH_VALUE_ACC_HIGH and PUSH_VALUE_ACC_LOW: “accumulator” variables used to con-
struct PUSH_VALUE_HIGH and PUSH_VALUE_LOW byte by byte out of “data carrying bytes”;
abbreviated to PVA hi and PVA lo;

18. PUSH_FUNNEL_BIT: a binary flag that matters for correctly contructing PUSH_VALUE_HIGH
and PUSH_VALUE_LOW; abbreviated to PFB;

128

Let us say something about PUSH_FUNNEL_BIT: this binary flag may switch from 1 to 0 when
constructing a given PUSH instruction’s PV hi and PV lo; its value determines which accumulator (PVA hi

or PVA lo) a data carrying raw byte from the (padded) bytecode gets funneled to. If PFB = 1, the byte
contributes to PVA hi, if PFB = 0, the byte contributes to PVA lo. To make this work we set PFB = 1
at the onset of a push instruction with PP > 16, it remains equal to 1 for the first PP − 16 rows
constructing the push value, and then switches to 0 for the 16 remaining rows. For a push instruction
with PP ≤ 16, PFB = 0 and all raw bytes are funneled to PVA lo.

The columns below are related to the bytecode itself: the bytes that make it up, how to interpret
them (i.e. do they code for instructions or are they data carriers for a PUSH_X instruction?), how much
to pad with 0x00’s etc…:

19. PADDED_BYTECODE_BYTE: raw byte from the padded bytecode; if LOAD = 1 code is being
loaded into ROM; the PBCB column lists the bytes from said bytecode one by one as well as
some extraneous 0x00’s beyond the CODESIZE (padding); abbreviated to PBCB;

20. OPCODE: the opcode associated to the PBCB; depends on the the context i.e. on whether the
byte is shadowed by a PUSH instruction (i.e. IPD = 1) and whether the CODESIZE_REACHED
flag is on (at which point we impose PBCB = OPCODE = 0x00); in all other circumstances
OPCODE = PADDED_BYTECODE_BYTE;

21. PADDING_BIT: a fully-counter-constant binary column; for code that is loaded into ROM this
indicates the number of full-counter-cycles of padding with 0x00’s to append after the bytecode
proper; padding is done like so: the loaded bytecode is padded with zeros beyond its CODESIZE
until we hit the first multiple of 32 (if CODESIZE is a clean multiple of 32 there is no such initial
padding); it is then followed up by a full counter’s worth of 0x00’s (i.e. 32 extra rows of 0x00’s);
abbreviated to PAD;

22. PC: program counter (i.e. index of the byte in the current bytecode);

23. CODESIZE_REACHED: a binary column that equals 0 at the onset of a given bytecode and
reaches 1 at the point where PCi = CODESIZEi; it resets to 0 at the onset of the next full
COUNTER-cycle; abbreviated to CSR;

24. IS_BYTECODE: a binary column that equals 1 for bytes that are part of the bytecode of the
bytecode currently loaded into the ROM and 0 for bytes that are part of the padding that may
be appended to the bytecode; abbreviated to IBC.

4.1.4 Constraints
Automatic constraints when LOADi = 0

The condition LOADi = 0 means that the current line is a simple import of previously commited values
of the CODESIZE and CODEHASH of a smartcontract that doesn’t get executed or EXTCODECOPY’d from.

1. if LOADi = 0 then

(a) CTi = 0 and CTi+1 = 0

(b) CYCi = 0 and CYCi+1 = 0

(c) CSRi = 0 and CSRi+1 = 0

(d) INITi = 0

(e) AIi+1 = 1 + AIi

(f) PCi = 0 and PCi+1 = 0

(g) LACS hi
i = 0 and LACS lo

i = 0

(h) OPCODEi = 0

(i) PBCBi = 0

(j) PADDING_BITi = 0

129

The constraint INITi = 0 signifies the fact that we may only import the digest of a smart contract into
ROM if that smart contract already exists in the state, i.e. is deployed.

We also require that LOAD be automatically set to 0 whenever the CS is zero, i.e.

2. if CODESIZEi = 0 then LOADi = 0,

3. furthermore, we impose the value of the Hash in case the code size is 0

if CODESIZEi = 0 then


CODEHASH_HIGHi = 0xc5d2460186f7233c927e7db2dcc703c0

and
CODEHASH_LOWi = 0xe500b653ca82273b7bfad8045d85a470

4. and conversely

if


CODEHASH_HIGHi = 0xc5d2460186f7233c927e7db2dcc703c0

and
CODEHASH_LOWi = 0xe500b653ca82273b7bfad8045d85a470

then CODESIZEi = 0

Where 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is the SHA3 hash
of the empty list.

CT constraints

The COUNTER column imposes a “pulse” to the ROM.

1. CT0 = 0,

2. if LOADi = 0 then
(
CTi = 0 and CTi+1 = 0

)
3. if LOADi = 1 then

(a) if CTi 6= 15 then CTi+1 = CTi + 1,
(b) if CTi = 15 then CTi+1 = 0,

4. if LOADN−1 = 1 then CTN−1 = 15.

These constraints impose that the COUNTER column is composed of 0’s and strips where CT goes
from 0 to 15 one step at a time. The constraints on CYC below will impose that such COUNTER-cycles
always appear in pairs.

A column X is counter-constant if it satisfies

if
(

LOADi = 1 and CTi 6= 15
)

then Xi+1 = Xi

CYC constraints

The CYCLIC_BIT column is a counter-constant binary column that oscilates from 0 to 1 and back
between counter cycles.

1. CYC is a binary counter-constant column;

2. CYC0 = 0

3. if LOADi = 0 then
(
CYCi = 0 and CYCi+1 = 0

)
4. if CTi = 15 then CYCi+1 = 1− CYCi;

130

5. if LOADN−1 = 1 then CYCN−1 = 1.

Since CYC = 0 if LOAD = 0 while if LOAD = 1, CYC = 0 initially, CT starts out at 0, increments one
by one until hitting 15, at which point CYC switches to 1. The preceding implies that at the reset of
CT, LOAD must remain = 1. Thus counter cycles appear in (consecutive) pairs.

A column X is fully-counter-constant if it remains constant along such consecutive pairs of
counter cycles, i.e. if it satisfies

if
(

LOADi = 1 and
(

CYCi = 0 or
(
CYCi = 1 and CTi 6= 15

)))
then Xi+1 = Xi

ADDRESS_INDEX (and ADDR) constraints

ADDRESS_INDEX counts the number of smart contract addresses in the ROM. As such it starts at 0
and increases by 1 with every new smart contract address.

1. AI0 = 0,

2. AI is fully-counter-constant,

3. if LOADi = 0 then AIi+1 = 1 + AIi

4. AI can only jump by 1, i.e. AIi+1 ∈ {AIi,AIi + 1} i.e.

(AIi+1 − AIi) · (AIi+1 − AIi − 1) = 0

5. AI changes iff ADDR hi or ADDR lo changes, i.e.

if


ADDR hi

i+1 = ADDR hi
i

and
ADDR lo

i+1 = ADDR lo
i

then AIi+1 = AIi

and similarly

if AIi+1 = AIi then


ADDR hi

i+1 = ADDR hi
i

and
ADDR lo

i+1 = ADDR lo
i

Given that ADDRESS_INDEX and the address change at the same times, we say that a column X is
address-constant if it satisfies

if AIi = AIi+1 then Xi = Xi+1.

INIT and CFI constraints

The purpose of the IS_INITCODE is the differentiate between initialization code and deployed code:
it equals 1 for initialization code and 0 for deployed code. When contract is deployed its initialization
code is loaded into ROM. If that deployment is successful the deployed bytecode gets loaded into ROM,
too.

1. INIT is a fully-counter-constant binary column ,

2. if LOADi = 0 then INITi = 0 ,

3. if
(

AIi = AIi+1 and INITi 6= INITi+1

)
then INITi = 1 and INITi+1 = 0.

131

In other words: INIT can only change at the end of full counter cycles and can only change once for a
given address, necessarily going from 1 to 0.

CODE_FRAGMENT_INDEX counts the code fragments present in ROM. As such it changes every
time the address changes (i.e. every time AI changes) and every time IS_INITCODE changes:

1. CFI0 = 0;

2. if
(

AIi+1 = AIi and INITi+1 = INITi

)
then CFIi+1 = CFIi;

3. else CFIi+1 = 1 + CFIi

We say that X is code-fragment-constant if it satisfies

if
(
CFIi+1 = CFIi

)
then Xi = Xi+1,

Thus a column that is address-constant is code-fragment-constant. However, a single address in ROM
corresponds to 1 or 2 code fragments. There are 2 code fragments for a single address iff the batch
contains a succesful contract deployment to said address. In that case INIT switches (necessarily from
1 to 0). The first code fragment (with INIT ≡ 1) corresponds to init code and the second code fragment
(with INIT ≡ 0) corresponds to the bytecode that was successfully deployed.

LOAD and INIT constraints

Recall that LOAD = 0 iff we are loading the codehash and codesize only. In all other cases LOAD = 1.
This flag is address-constant (and thus fully-counter-constant). The INIT binary flag has INIT = 1 iff
the current code fragment is init code. This flag is code-fragment constant (and thus) fully-counter-
constant.)

1. LOAD is an address-constant binary column;

2. INIT is a code-fragment-constant binary column;

3. Exit constraints:

if LOADN−1 = 1 then

 CTN−1 = 15
and CYCN−1 = 1
and PADDING_BITN−1 = 0

4. We include here a constraint saying that within the IS_INITCODE can only jump from 1 to 0
within a given address (and not from 0 to 1.)

if


CTi = 15

and CYCi = 1

and AIi+1 = AIi
then INITi+1 ∈

{
INITi, INITi − 1

}
(This constraint is arithmetized by (INITi+1 − INITi) · (INITi+1 − INITi − 1) = 0.) Since INIT
is binary this means that under the previous circumstances INITi either remains constant for a
given value of the address, or jumps once from 1 to 0.

Note. As will be explained below, ADDRESS_INDEX changes precisely when ADDR changes. The
condition AIi+1 = AIi thus simply means that the address didn’t change from line i to line i+ 1.

132

CT CYC PBCB LACS hi LACS lo

...
...

...
...

...
0 0 b0 0x b0 b1 b2 · · · b14b15 0x b16b17b18 · · · b30b31

1 0 b1 0x b1 b2 b3 · · · b15b16 0x b17b18b19 · · · b31 0
2 0 b2 0x b2 b3 b4 · · · b16b17 0x b18b19b20 · · · 0 0
...

...
...

...
...

14 0 b14 0x b14b15b16 · · · b28b29 0x b30 b31 0 · · · 0 0
15 0 b15 0x b15b16b17 · · · b29b30 0x b31 0 0 · · · 0 0
0 1 b16 0x b16b17b18 · · · b30b31 0x 0 0 0 · · · 0 0
1 1 b17 0x b17b18b19 · · · b31 0 0x 0 0 0 · · · 0 0
2 1 b18 0x b18b19b20 · · · 0 0 0x 0 0 0 · · · 0 0
...

...
...

...
...

14 1 b20 0x b30 b31 0 · · · 0 0 0x 0 0 0 · · · 0 0
15 1 b31 0x b31 0 0 · · · 0 0 0x 0 0 0 · · · 0 0
...

...
...

...
...

Figure 4.1: A full COUNTER-cycle’s worth of LEFT_ALIGNED_CODESUFFIX_HIGH and
LEFT_ALIGNED_CODESUFFIX_LOW.

Left shifted suffix constraints

The LACS hi and LACS lo columns are useful for dealing with CODECOPY and EXTCODECOPY instructions.
Since these operations require one to load the bytecode into ROM we require

if LOADi = 0 then
(

LACS hi
i = 0 and LACS lo

i = 0
)
.

The expected behaviour of these columns is represented in the table below: Bytecode is listed byte
by byte. The bytecode of a given smartcontract (or init code) that finds itself in the ROM is comprised
of consecutive full COUNTER-cycles of bytecode. This implies that bytecode may be padded with 0’s
to make its length a clean multiple of 32. The padding (if any) affects neither the CODESIZE nor the
CODEHASH thanks to a binary column indicating padding rows. In other words: When we load code
from some contract’s bytecode using either CODECOPY or EXTCODECOPY, we first import a left shifted
suffix of the beginning portion of the bytecode to copy. The remainder of the words that are copied
from ROM to RAM are full words constituted of the bytes of a full-counter-cycle’s worth of bytes.
For both the special first ”partial” import and the subsequent ”full” imports we use these left shifted
suffix columns.
The constraints below apply when LOADi = 1

LACS lo constraints. —

1. if CYCi = 0 then LACS lo
i+1 = 256 ·

(
LACS lo

i − 25615 · PBCBi+16

)
2. if CYCi = 1 then LACS lo

i = 0

LACShi constraints. —

1. if CYCi = 0 then LACS hi
i+1 − PBCBi+17 = 256 ·

(
LACS hi

i − 25615 · PBCBi

)
2. if CYCi = 1 then LACS hi

i = LACS lo
i−16

133

CSR and PC constraints

The program counter PC is local to a code fragment; it starts at 0 and increases by 1 with every byte
in the code fragment (i.e. padded bytecode):

1. PC0 = 0;

2. if CFIi+1 = CFIi then PCi+1 = 1 + PCi;

3. if CFIi+1 6= CFIi then PCi+1 = 0.

CODESIZE_REACHED equals 0 while the PC hasn’t reached CODESIZE, at which point it equals
1 until the end of the current CFI.

1. CSR is a binary column;

2. CSR0 = 0;

3. transition:

(a) if
(

CFIi+1 = CFIi
)

then

(CSRi+1 − CSRi) · (CSRi+1 − CSRi − 1) = 0

i.e. CSRi+1 ∈
{

CSRi,CSRi + 1
}

and{
if 1 + PCi+1 = CSi+1 then CSRi+1 = CSRi + 1

if 1 + PCi+1 6= CSi+1 then CSRi+1 = CSRi

(PC starts at 0 while CS starts at 1)

(b) if
(

CFIi+1 6= CFIi
)

then

i. if LOADi+1 = 0 then CSRi+1 = 1

ii. if LOADi+1 = 1 then
A. CSi+1 6= 0

B. if CSi+1 = 1 then CSRi+1 = 1

C. if CSi+1 6= 1 then CSRi+1 = 0

4. termination: if LOADN−1 = 1 then CSRN−1 = 1.

PADDING_BIT constraints

The PADDING_BIT column counts the remaining full COUNTER-cycles of zero paddings.

1. PAD is binary and fully-COUNTER-constant;

2. PAD0 = LOAD0

3. if CFIi+1 6= CFIi then PADi+1 = LOADi+1

4. if
(

CTi = 15 and CYCi = 1
)

then

(a) if CSRi = 0 then PADi+1 = 1;
(b) if CSRi = 1 and PADi = 1 then PADi+1 = 0;
(c) if PADi = 0 then CFIi+1 = 1 + CFIi

134

5. PADN−1 = 0.

At the beginning of every code fragment PAD is initialized to LOAD (i.e. to 1 if we are loading
code and to 0 otherwise). If we are loading code into ROM, PAD remains constant equal to 1 for
all full-COUNTER-cycles as long as CODESIZE wasn’t reached. The first full-COUNTER-cycle that
starts with the CODESIZE_REACHED flag set to 1 starts by decrementing PAD to 0. This is the (full)
padding cycle; it ends with an imposed increment in CODE_FRAGMENT_INDEX.

This padding and these lengths of padding were chosen so that

1. there are always enough zeros following the end of the bytecode proper to construct correct push
values (if needed);

2. constructing push values doesn’t encroach on bytes from the next code fragment;

3. the PC column extends far enough so that PCi + PPi + 1 is in the PC range of the current code
fragment and can (if need by) be imported in the MET directly from ROM.

It can happen that the program counter is set to a value much larger than PCi + 1 + 1,PCi + 2 +
1, . . . ,PCi+32+1, e.g. if the program jumps to large value. These large jumps are recognized as such
by the Main Execution Trace (by comparing the next PC to the code size).

IBC constraints

IS_BYTECODE equals 1 for bytes that are part of the bytecode and 0 for any bytes that are padding.
IBC is essentially a shifted version of 1− CSR.

1. IBC is a binary column;

2. initialization: IBC0 = LOAD0;

3. if CFIi+1 6= CFIi then IBCi+1 = LOADi+1;

4. if CFIi+1 = CFIi then IBCi+1 = 1− CSRi;

5. Due to padding IBC always terminates with 0:

IBCN−1 = 0.

6. if IBCi = 0 then OPCODEi = PBCBi = 0

PUSH_FUNNEL_BIT constraints

1. PFB is a binary column,

2. if IPDi = 0 then PFBi = 0

3. if PPOi = 16 then PFBi+1 = −1 + PFBi

4. if
(

IPDi = 1 and PPOi = 0
)

then PFBi = 0

In other words, PFB is a binary column that can only be = 1 for rows containing data carrying bytes.
If PPO passes the threshold of 16 PFB is decremented; also when the push parameter is done being
built PFB must be 0. Therefore, when building the push parameter PFB will start at 1 and go to 0 if
PP > 16, otherwise PFB = 0 throughout.

135

4.1.5 Constraints related to PUSH instructions
The constraints below construct PUSH_VALUE for PUSH instructions.

1. if CFIi+1 = CFIi i.e. we remain within the same code fragment:

(a) Increment the program counter: PCi+1 = PCi + 1

(b) if IS_PUSH_DATAi = 0, i.e. the current byte is not one that contributes to the value
pushed onto stack by a PUSH instruction:
i. OPCODEi = PBCBi;
ii. if IS_PUSH_INSTRUCTIONi = 1 i.e. we are reading a push instruction (say PUSH_X)

and the next X lines are data carrying bytes that will be aggregated into (the high and
low part of) the value to push on stack
A. set IS_PUSH_DATA for the next instruction:

IS_PUSH_DATAi+1 = 1

B. PUSH_VALUE remains constant:{
PUSH_VALUE hi

i+1 = PUSH_VALUE hi
i

PUSH_VALUE lo
i+1 = PUSH_VALUE lo

i

C. initialize the PUSH value accumulators:{
PUSH_VALUE_ACC hi

i = 0

PUSH_VALUE_ACC lo
i = 0

D. Set the PUSH_PARAMETER_OFFSET to the PUSH_PARAMETER:{
PUSH_PARAMETER_OFFSETi = PUSH_PARAMETERi

PUSH_PARAMETER_OFFSETi+1 = −1 + PUSH_PARAMETERi

iii. elseif IS_PUSH_INSTRUCTIONi = 0 i.e. the current instruction is not a PUSH then

PUSH_VALUE_HIGHi = 0

PUSH_VALUE_LOWi = 0

PUSH_VALUE_ACC_HIGHi = 0

PUSH_VALUE_ACC_LOWi = 0

PUSH_PARAMETER_OFFSETi = 0

IS_PUSH_DATAi+1 = 0

In other words: there is nothing to push (and we don’t need to construct the push
value) and the following isn’t a data carrying byte, i.e. a byte claimed by a PUSH
instruction.

(c) elseif IS_PUSH_DATAi = 1 i.e. the current byte is a data carrying byte and contributes
to a push value:
i. OPCODEi = INVALID;
ii. Compute the current push value:

if PFBi = 1

{
PVA hi

i = 256 · PVA hi
i−1 + PBCBi

PVA lo
i = PVA lo

i−1

if PFBi = 0

{
PVA hi

i = PVA hi
i−1

PVA lo
i = 256 · PVA lo

i−1 + PBCBi

136

iii. if PUSH_PARAMETER_OFFSETi 6 =0: there are still other elements to push on the
stack:
A. decrement PPO: PPOi+1 = PPOi − 1;
B. the next byte is still a data carrying one: IPDi+1 = 1;
C. PUSH_VALUE remains constant:{

PV hi
i+1 = PV hi

i ,

PV lo
i+1 = PV lo

i .

iv. elseif PUSH_PARAMETER_OFFSETi = 0: the current byte from the (padded) byte-
code is the final byte contributing to the value that the push instruction may put on
stack.
A. Unset the PUSH parameter flag IPDi+1 = 0.
B. Confirm the PUSH_VALUE: {

PV hi
i = PVA hi

i

PV lo
i = PVA lo

i

C. The next value of the PUSH parameter is enforced by 1(b)iii and 1(b)ii.

2. if CFIi+1 6= CFIi then

(a) IPDi+1 = 0, i.e. the next bytecode can’t start “mid-PUSH”,
(b) OPCODEi+1 = PBCBi+1;

INST PBCB IPD PP PPO PFB PVA hi PVA lo PV hi PV lo

...
?

...
?

...
?

...
? 0 0

...
?

...
?

...
?

...
?

PUSH18 0x 71 0 18 18 0 0x 0 0x 0 0x ab 0x cd · · · qr
INV. a 1 18 17 1 0x a 0x 0 0x ab 0x cd · · · qr
INV. b 1 18 16 1 0x ab 0x 0 0x ab 0x cd · · · qr
INV. c 1 18 15 0 0x ab 0x c 0x ab 0x cd · · · qr
INV. d 1 18 14 0 0x ab 0x cd 0x ab 0x cd · · · qr
...

...
...

...
...

...
...

...
...

...
INV. q 1 18 1 0 0x ab 0x cd · · · q 0x ab 0x cd · · · qr
INV. r 1 18 0 0 0x ab 0x cd · · · qr 0x ab 0x cd · · · qr
?
...

?
...

0 ?
...

?
...

0 ?
...

?
...

?
...

?
...

Figure 4.2: The set-up in action for a PUSH18 instruction.

4.1.6 Contract Address comparisons
Smart contract addresses are to be listed in ascending order. A given smart contract address may
be associated with both an initcode and a deployed bytecode. We ask that in this case the deployed
bytecode come after the initcode. In other words we ask that the rows be ordered according to
lexicographic order on

(ADDR hi,ADDR lo, INIT,PC)
In other words:

137

INST PBCB IPD PP PPO PFB PVA hi PVA lo PV hi PV lo

...
?

...
?

...
?

...
? 0 0

...
?

...
?

...
?

...
?

PUSH4 0x 63 0 4 4 0 0x 0 0x 0 0x 0 0x abcd
INV. a 1 4 3 0 0x 0 0x a 0x 0 0x abcd
INV. b 1 4 2 0 0x 0 0x ab 0x 0 0x abcd
INV. c 1 4 1 0 0x 0 0x abc 0x 0 0x abcd
INV. d 1 4 0 0 0x 0 0x abcd 0x 0 0x abcd
?
...

?
...

0 ?
...

?
...

0 ?
...

?
...

?
...

?
...

Figure 4.3: The set-up in action for a PUSH4 instruction.

1. We first order by address,

2. within a given address we first list (if present) the init code followed (if present) by the byte code
put on chain,

3. within such a code fragment we order by program counter.

The Word Comparison module imports the columns (ADDRESS_INDEX,ADDR hi,ADDR lo) from the
ROM. We check this ordering in Word Comparion module. Within a given address we first list code
fragments with INIT = 1 followed by code fragments with INIT = 0, and within code fragments list
lines with PC in ascending order. Both of these constraints are enforced in the ROM.

138

Chapter 5

Out of bounds

5.1 Columns
5.1.1 Purpose
The present document is a revised and expanded version of a previous (partial) specification of a
zk-evm.

5.1.2 Column descriptions
We start out by listing the imported columns

1. 〈OOB � 〉: imported column containing the module time stamp; counts the rare checks;

2. 〈REFS〉: imported column containing the relevant (i.e. instruction dependent) “reference size”;

3. 〈OFF hi〉 and 〈OFF lo〉: imported columns containing the high and low part respectively of an
“offset” column;

4. 〈SIZE hi〉 and 〈SIZE lo〉: imported columns containing the high and low part respectively of a “size”
column;

5. 〈JOOB〉: imported binary column containing the jump out of bounds flag;

6. 〈CDL_OOB〉: imported binary column containing the call data load out of bounds flag;

7. 〈RETDCX〉: imported binary column containing the return data copy exception flag;

8. 〈MAXCSX〉: imported binary column containing the max code size exception flag;

Note that the 〈JOOB〉, 〈RETDCX〉, 〈MAXCSX〉 flags are importe from the MET where they seemingly
appear “out of thin air”. They will be justified in the present module. We also import some decoded
columns (out of sheer convenience)

9. 〈 ♦JUMP� 〉, 〈 ♦RDC� 〉, 〈 ♦CDL� 〉, 〈 ♦RETURN� 〉: imported binary flags that record which
instruction the rare checks module is dealing with;

We introduce the module specific columns

10. RIDICULOUSLY_OOB: binary, 〈OOB � 〉-constant column; indicates whether relevant offsets are
ridiculously out of bounds, by which we mean that relevant “high parts” are nonzero; abbreviated
to ROOB;

139

https://ethresear.ch/t/a-zk-evm-specification/11549
https://ethresear.ch/t/a-zk-evm-specification/11549

11. OOB: binary, 〈OOB � 〉-constant column; indicates whether relevant offsets are out of bounds
(but not necessarily ridiculously so);

12. COUNTER: counter column; counts up starting at 0 to either 0, 3 or 16;

13. BYTE_1: byte column;

14. ACC_1: accumulator column; accumulates the bytes from the previous column;

5.2 Heartbeat
The heartbeat is simple and resembles that of other modules. We define a column X to be 〈OOB � 〉-
constant if it satisfies

∀i, 〈OOB � 〉i+1 = 〈OOB � 〉i =⇒ Xi+1 = Xi

The construction of the OOB � stamp in the MET and the selection process for the rows (with
potentially nonzero values) which the present module imports enforce that all imported columns of the
present module are automatically 〈OOB � 〉-constant. We further ask that the following columns be
〈OOB � 〉-constant:

1. OOB

2. ROOB

What follows are the heartbeat constraints.

1. 〈OOB � 〉0 = 0

2. if 〈OOB � 〉i = 0 then the entire ith row vanishes;

3. ∀i, 〈OOB � 〉i+1 ∈ {〈OOB � 〉i, 1 + 〈OOB � 〉i};

In other words, 〈OOB � 〉 either remains constant or increases one by one.

4. if 〈OOB � 〉i 6= 0 then

(a) if 〈OOB � 〉i 6= 〈OOB � 〉i−1 then CTi = 0

(b) if ROOBi = 1 then 〈OOB � 〉i+1 = 1 + 〈OOB � 〉i.
(c) if ROOBi = 0 and OOBi = 1 then

i. if CTi 6= 16 then {
〈OOB � 〉i+1 = 〈OOB � 〉i
CTi+1 = 1 + CTi

ii. if CTi = 16 then {
〈OOB � 〉i+1 = 1 + 〈OOB � 〉i
CTi+1 = 0

(d) if ROOBi = 0 and OOBi = 0 then
i. if CTi 6= 3 then {

〈OOB � 〉i+1 = 〈OOB � 〉i
CTi+1 = 1 + CTi

ii. if CTi = 3 then {
〈OOB � 〉i+1 = 1 + 〈OOB � 〉i
CTi+1 = 0

In other words there are three scenarios from the point of view of the heartbeat:

140

1. relevant offsets may be ridiculously out of bounds, i.e. ROOB = 1: in this case the present
module knows how to produce the correct result in a single line of execution trace;

2. relevant offsets aren’t ridiculously out of bounds, i.e. ROOB = 0:

(a) offsets may still be out of bounds (OOBi = 1) but establishing this may require up to 17
many rows;

(b) offsets are within bounds (OOBi = 0) and establishing this requires up to 4 many rows;

Note that we chose 4 (and thus 3 = 4 − 1 in the heartbeat) as a cut-off point due to the fact that
“realistic” call data sizes and return data sizes are 4-byte integers. We give more details as to this
decision in the memory expansion module. Note that in the “ROOB = 0, OOBi = 1” case we find
ourselves (like in the Memory Expansion Module) working on sums of limbs (minus another “small”
limb), i.e. integers that (may) require 1 + 8 · 16 bits to represent whence the 16 = 17 − 1 in the
heartbeat.

5.3 Constraints
5.3.1 Bytehood, byte decompositions, binary and ternary checks
We ask that BYTE_1 be a byte column. We ask that ACC_1 accumulate its bytes, i.e.

1. if OOB � i 6= OOB � i−1 then ACC_1i = BYTE_1i

2. if OOB � i = OOB � i−1 then ACC_1i = 256 · ACC_1i−1 + BYTE_1i.

The accumulator constructs a relatively small (1-byte, 4-byte or 17-byte) integer. This target integer
will later be set to be the currently relevant “adjusted nonnegative difference”. We ask that ROOB
and OOB be binary columns.

5.3.2 CALLDATALOAD specific instructions
With CALLDATALOAD instructions we simply check whether the “(relative) offset” where the the evm
starts reading the call data being loaded into the stack is ≥ CALLDATA_SIZE. Indeed, the data
carrying bytes of call data occupy, within that call data, the (relative) indices {0, 1, . . . ,CDS− 1}.

ROOB OOB

1 ⇐⇒ the high part of the offset is nonzero

0 1 ⇐⇒ “offset ≥ CALLDATA_SIZE”

0 0 ⇐⇒ “offset < CALLDATA_SIZE”

We list the constraints per se.

All constraints in this subsection assume 〈 ♦CDL� 〉i = 1

1. We compute ROOBi: {
if 〈OFF hi〉i 6= 0 then ROOBi = 1

if 〈OFF hi〉i = 0 then ROOBi = 0

2. if ROOBi = 1 then 〈CDL_OOB〉i = 1;

3. if ROOBi = 0:

141

Target constraint.
if OOBi = 1 then

if CTi = 16 then 〈OFF hi〉i − REFSi = ACC_1i

if OOBi = 0 then
if CTi = 3 then REFSi − 〈OFF hi〉i − 1 = ACC_1i

Flag constraint. 〈CDL_OOB〉i = OOBi;

5.3.3 RETURNDATACOPY specific instructions
With RETURNDATACOPY we must check whether “offset + size” excedes the return data size. For
RETURNDATACOPY to fail (other than for gas related reasons) the instruction must access a byte beyond
the provided return data. Valid indices of return data for the set {i | 0 ≤ i < 〈RDS〉}. The slice of con-
tiguous bytes of with initial index “offset” and size “size” covers the indices {i | offset ≤ i < offset+size}.
This interval is included in the previous one iff size ≤ 〈RDS〉. The following table subsumes the situ-
ation. It applies to RETURNDATACOPY only:

ROOB OOB

1 ⇐⇒ the offset or the size high part is nonzero

0 1 ⇐⇒ “offset+ size > RDS”

0 0 ⇐⇒ “offset+ size ≤ RDS”

We list the constraints per se.

All constraints in this subsection assume 〈 ♦RDC� 〉i = 1

1. We compute ROOBi:
if 〈OFF hi〉i 6= 0 then ROOBi = 1

if 〈SIZE hi〉i 6= 0 then ROOBi = 1

if
(
〈OFF hi〉i = 0 and 〈SIZE hi〉i = 0

)
then ROOBi = 0

2. if ROOBi = 1 then 〈RETDCX〉i = 1;

3. if ROOBi = 0:

Target constraint. We test whether “offset+ size” excedes the return data size
(a) if OOBi = 1 then

if CTi = 16 then
(
〈OFF lo〉i + 〈SIZE lo〉i

)
− REFSi − 1 = ACC_1i

(b) if OOBi = 0 then

if CTi = 3 then REFSi −
(
〈OFF lo〉i + 〈SIZE lo〉i

)
= ACC_1i

Flag constraint. 〈RETDCX〉i = OOBi;

142

5.3.4 JUMP / JUMPI specific instructions
With JUMP / JUMPI instructions we must check whether “counter” excedes the code size. Recall that
the “counter” (which aims to be the next value of the PC column) should point within the currently
executing bytecode. Bytes within that bytecode are indexed starting from 0. (Potentially) valid indices
are thus in the range {0, . . . , 〈CODESIZE〉−1}. The following table applies to JUMP / JUMPI instructions
only:

ROOB OOB

1 ⇐⇒ the high part of the new counter is nonzero

0 1 ⇐⇒ “counter ≥ CODESIZE”

0 0 ⇐⇒ “counter < CODESIZE”

We list the constraints per se.

All constraints in this subsection assume 〈 ♦RDC� 〉i = 1

1. We compute ROOBi: {
if 〈OFF hi〉i 6= 0 then ROOBi = 1

if 〈OFF hi〉i = 0 then ROOBi = 0

2. if ROOBi = 1 then 〈JOOB〉i = 1;

3. if ROOBi = 0:

Target constraint.
if OOBi = 1 then

if CTi = 16 then 〈OFF hi〉i − REFSi = ACC_1i
if OOBi = 0 then

if CTi = 3 then REFSi − 〈OFF hi〉i − 1 = ACC_1i
Flag constraint. 〈JOOB〉i = OOBi;

5.3.5 RETURN specific instructions
With RETURN in a deployment context (i.e. CTYPE = 1) we must check whether the size of the RETURN
instruction excedes the maximum code size of 0x6000 = 24576. For RETURN to fail (other than for gas
related reasons) we must have size > 24576.

ROOB OOB

1 ⇐⇒ the offset (or size) high part is nonzero

0 1 ⇐⇒ “size > 24576”

0 0 ⇐⇒ “size ≤ 24576”

We list the constraints per se.

All constraints in this subsection assume 〈 ♦RETURN� 〉i = 1

1. We compute ROOBi: {
if 〈SIZE hi〉i 6= 0 then ROOBi = 1

if 〈SIZE hi〉i = 0 then ROOBi = 0

143

2. if ROOBi = 1 then 〈MAXCSX〉i = 1;

3. if ROOBi = 0:

Target constraint. We test whether “size” excedes the return data size
(a) if OOBi = 1 then

if CTi = 16 then
(
〈SIZE lo〉i

)
− REFSi − 1 = ACC_1i

(b) if OOBi = 0 then

if CTi = 3 then REFSi − 〈SIZE lo〉i = ACC_1i

Flag constraint. 〈MAXCSX〉i = OOBi;

144

Chapter 6

Memory expansion

6.1 Memory expansion module
6.1.1 Introduction
The purpose of the memory expansion module is

• to update, when appropriate, the current context’s MEMORY_SIZE_IN_BYTES (i.e. MSIZE);

• to verify 〈∆_MEMORY_EXPANSION_COST〉 (i.e. 〈∆MXC〉) associated with memory expanding
operations;

• to recognize grossly out of bounds memory operations and to verify 〈MEMORY_EXPANSION_EXCEPTION〉
(i.e. 〈MXX〉).

If we’re being precise, this module verifies the claimed ∆MXC gas which it imports from the central
trace as 〈∆MXC〉.

The memory expansion module is triggered by those instructions that raise the (instruction de-
coded) memory expansion flag ♦MEMORY_EXPANSION_FLAG (i.e. ♦MXF). The Hub keeps a
tally of the number of (potentially) memory expanding operations: the MX� column. This stamp
grows by 1 with every (potentially) memory expanding operation. In essence it satisfies MX�i+1 =
MX�i+1 + ♦MXFi+1

1. The present module imports it under 〈MX�〉. Its import is required as the
order of operations is important in assessing an instruction’s memory expansion cost.

(Potentially) memory expanding operations are split into three broad memory expansion types2.
An instruction’s ♦MEMORY_EXPANSION_TYPE (i.e. ♦MXT) is instruction decoded in the main
execution trace. The present module imports the memory expansion type 〈 ♦MXT〉 along with relevant
values from the stack (i.e. four stack values). The zk-evm considers MSIZE a type 0 instruction (the
only of its kind.) Type 1a and 1b instructions are those instructions whose memory expansion
cost depends purely on an offset i.e. instructions with an implicit size parameter (32 for type 1a and
1 for type 1b depending on the instruction):

1. MLOAD (type 1a);

2. MSTORE (type 1a);

3. MSTORE8 (type 1b).

Type 2 instructions compute memory expansion in terms on a a single offset and size:

1This is slightly simplified as the Hub needs to distinguish between instructions with ♦TWO_LINE_INSTRUCTION = 1
and those with ♦TWO_LINE_INSTRUCTION = 0.

2Five types in practice.

145

1. CREATE;

2. CREATE2;

3. RETURN;

4. REVERT;

5. LOG0-LOG4;

6. SHA3;

7. CODECOPY;

8. EXTCODECOPY;

9. CALLDATACOPY;

10. RETURNDATACOPY.

Type 3 instructions are CALL-type instruction. These compute memory expansion in terms on
two sets of offset and size parameters: (a) the offset and size defining call data (b) the offset and size
defining the memory segment where the callee might write (part of) its return data. The zk-evm needs
to determine the maximum value memory expansion cost between the two. The relevant instructions
are

1. CALL;

2. CALLCODE;

3. STATICCALL;

4. DELEGATECALL.

The present module deals with memory expansion uniformly. To that effect it first recognizes trivial
cases: either when offsets or sizes are far too large or when no memory expansion can happen since
relevant sizes are zero (NOOP = 1). In case offsets and sizes satisfy both requirements it produces the
maximal offset(s) that may be written to or read from. If there are two sets of offsets

The reason memory expansion is its own module is that its internal clock (its “heartbeat”) is
distinct from that of the stack, that of the RAM pre-processor and that of the RAM data processor.
Indeed, gas computations are done ahead of instruction execution. As such some instructions may
trigger the memory expansion module only to later be filtered out (for causing an OOG exception)
and thus never making it to the RAM offset processor (let alone the data processor.)

6.1.2 Columns
The following columns determine the heartbeat of the module:

1. 〈MEMORY_EXPANSION_STAMP〉: imported column; abbreviated to 〈MX�〉;

2. 〈 ♦MEMORY_EXPANSION_TYPE〉: imported column: contains the memory expansion type of
the instruction which triggered the memory expansion module; abbreviated to 〈 ♦MXT〉;

3. 〈MEMORY_EXPANSION_EXCEPTION〉: imported binary column; indicates whether both max-
imal offsets fit into 4 bytes or not; abbreviated to 〈MXX〉;

4. RIDICULOUSLY_OUT_OF_BOUNDS: counter-constant binary column indicating whether an off-
set or a size is ridiculously out of bounds; abbreviated to ROOB;

5. NOOP: counter-constant binary column; lights up if relevant size(s) are zero (i.e. the underlying
instruction is a no-op from the point of view of memory expansion and that alone);

6. COUNTER: counter column; grows monotonically and resets to 0 with every new instruction;
abbreviated to CT;

The COUNTER column counts either from 0 to 3 or from 0 to 16. Which of the two is the cut-off point
depends on whether the maximal offset fits into 4 bytes (〈MXX〉 = 0) or not (〈MXX〉 = 1). Maximal
offsets are defined as sums of two 16 byte integers and as such may overflow 16 bytes. Computing
their byte decomposition may thus require 17 bytes. This explains CT’s threshold at 16 rather than
the 15 = 16− 1 found in other modules. Imported columns are surrounded by 〈 · · · 〉.

146

7. 〈CN〉: imported column; contains the execution context number currently executing an instruc-
tion raising the memory expansion flag;

Its only purpose is in

8. 〈 1VAL hi〉, 〈 1VAL lo〉: import of (the high and low part of) the first stack value;

9. 〈 2VAL hi〉, 〈 2VAL lo〉: same, mutatis mutandis;

10. 〈 3VAL hi〉, 〈 3VAL lo〉: same, mutatis mutandis;

11. 〈 4VAL hi〉, 〈 4VAL lo〉: same, mutatis mutandis;

12. BYTE_0, . . . ,BYTE_8: byte columns;

13. ACC_0, . . . ,ACC_6: accumulator columns;

The first byte columns BYTE_0, . . . ,BYTE_6 provide the bytes accumulated in ACC_0, . . . ,ACC_6.
The byte columns BYTE_7, BYTE_8 provide auxiliary bytes that are used, for instance, to complete
byte decompositions of medium-sized numbers (i.e. 6-byte integers) that may appear in calculations.

14. MSIZE: counter-constant column; contains the size of active memory in bytes (counting contin-
uously from position 0) before excution of the current instruction; though imported, its value is
only justified here;

15. MSIZEν : counter-constant column; may contain the size of active memory in bytes (counting
continuously from position 0) after excution of the current instruction;

16. MEMORY_EXPANSION_COST: counter-constant column; cotains the currently valid value of
“Cmem(a)”3; abbreviated to MXC;

17. MEMORY_EXPANSION_COSTν : counter-constant column; either retains the value MXC if no
memory expansion took place or, if memory expansion did occur, stores the updated value of
MXC; abbreviated to MXCν ;

18. 〈∆_MEMORY_EXPANSION_COST〉: imported column containing the claimed gas expansion
cost; abbreviated to 〈∆MXC〉;

19. 〈SIZE_IN_EVM_WORDS〉: imported column; for instructions of type 2 that are in bounds con-
tains dSIZE/32e; abbreviated to 〈SEVMW〉;

The claimed gas expansion cost is verified in the present module as 〈∆MXC〉 = MXCν −MXC.

20. COMP: binary counter-constant column; equals 1 iff LAST_OFFSET1 ≥ LAST_OFFSET2; comes
into play only for memory expanding instructions involving two offsets;

21. MAX_OFFSET: equals max
{
〈LAST_OFFSET1〉, 〈LAST_OFFSET2〉

}
when both are in bounds;

22. MEMORY_EXPANSION_EVENT: given ROOB = NOOP = 0, indicates whether MAX_OFFSET >
MSIZE and thus whether the current instruction may incur memory expansion cost; abbreviated
to MXE;

3Notation taken from the Ethereum Yellow Paper [7]:

Cmem(a) = Gmem · a+

⌊
a2

512

⌋
where a is the current number of evm words in memory.

147

6.1.3 Offset bounds
Touching (i.e. reading or writing) the byte at offset OFFSET in memory may incur a gas cost on top
of the intrinsic gas cost of the instruction. This extra memory expansion cost applies whenever the
offset is greater than any other offset previously touched, or more precisely: when the byte belongs
to slice of 32 consecutive bytes with word offset a = d(OFFSET + 1)/32e greater than that of any
previously accessed byte.

OFFSET 0 1 · · · 31 32 33 · · · 63 64 65 · · · 95 · · ·
word offset a = 1 a = 2 a = 3

The memory expansion module has a notion of smallness: small integers are 4-byte integers. When-
ever an offset + size excedes this threshold (given that size 6= 0) the memory expansion module “gives
up” on the instruction and raises the 〈MXX〉-flag. We further refer the reader to the following paragraph
from the Ethereum Yellow Paper [7]

[The] total fee for memory-usage payable is proportional to smallest multiple of 32 bytes
that are required such that all memory indices [. . .] are included in the range [. . .] Due
to this fee it is highly unlikely addresses will ever go above 32-bit bounds. That said,
implementations must be able to manage this eventuality.

The memory expansion cost for a byte offset OFFSET ≥ 2564 is, setting and Gmemory = 3

≥ Gmemory · a+ ba2/512c ≈ 35 TGas

When a (potentially) memory expanding instruction has its largest offset(s) “within bounds” and
isn’t a noop, the memory expansion module sets the two last touched offsets as LAST_OFFSET1 =
OFFSET1 + (SIZE1 − 1) and LAST_OFFSET2 = OFFSET2 + (SIZE2 − 1). If the memory expansion
type 〈 ♦MXT〉 requires only one offset the second one is instead set to 0; if a size parameter is zero
then the associated LAST_OFFSET is also set to 0. With all these parameters in place the first task
of the present module is to determine the maximum of the two:

MAX_OFFSET = max
{

LAST_OFFSET1, LAST_OFFSET2
}

It then compares MAX_OFFSET to MSIZE. If MAX_OFFSET ≤ MSIZE its work is essentially
done as no memory expansion is triggered. Otherwise, if MAX_OFFSET > MSIZE it computes
dMAX_OFFSET/32e which it does by establishing the following variation on the euclidean division

MAX_OFFSET + 1 = 32 · q− r (♣)

with r ∈ {0, 1, . . . 31}. In the arithmetization, q = ACC_5. The next step is to compute the quadratic
part of the memory expansion cost which requires determining the euclidean division of q by 512:{

q2 = 512 · q′ + r′, 0 ≤ r′ < 512,
r′ = 256 · ε+ b, ε ∈ {0, 1}, 0 ≤ b < 256,

(♠)

In the arithmetization q′ = ACC_6.
Given the smallness bounds on MAX_OFFSET < 2 · 2564 = 232+1, we see that

1. q can be of the order of magnitude of ≈ 227 and defines a 4-byte integer

2. q′ can be of the order of magnitude of ≈ 245 and defines a (4+ 2)-byte integer

The memory expansion cost is therefore, with Gmem = 3:

Cmem = Gmemory · q + q′

148

6.2 General constraints
6.2.1 Heartbeat
The columns 〈MX�〉, 〈 ♦MXT〉, 〈MXX〉, ROOB, NOOP and CT define the heartbeat of the memory
expansion module. Here are the constraints they satisfy:

1. 〈MX�〉0 = 0;

2. 〈MX�〉 is nondecreasing, i.e. ∀i, 〈MX�〉i+1 ∈ {〈MX�〉i, 1 + 〈MX�〉i};

3. if 〈MX�〉i = 0 then the whole row is null;

4. if 〈MX�〉i+1 6= 〈MX�〉i then CTi+1 = 0;

5. if
(
〈MX�〉i 6= 0 and 〈 ♦MXT〉i = memExpType0

)
then

ROOBi = 0
NOOPi = 1
〈MXX〉i = 0
〈MX�〉i+1 = 1 + 〈MX�〉i

In other words, MSIZE instructions occupy a single line in the memory expansion module.

Nothing interesting happens if offsets are ridiculously out of bounds. The MEMORY_EXPANSION_EXCEPTION
is automatically triggered.

6. if 〈MX�〉i 6= 0 and ROOBi = 1 then{
〈MXX〉i = 1
〈MX�〉i+1 = 1 + 〈MX�〉i

Nothing interesting happens if none of the sizes are nonzero, i.e. if the instruction is a noop from the
point of view of memory expansion.

7. if
(
〈MX�〉i 6= 0 and ROOBi = 0 and NOOPi = 1

)
then CTi = 0

〈MXX〉i = 0
〈MX�〉i+1 = 1 + 〈MX�〉i

The following case is the main case of interest: the zk-evm deals with a real instruction, i.e. 〈MX�〉 6= 0,
offsets aren’t ridiculously out of bounds, i.e. ROOB = 0, and some size is nonzero, i.e. NOOP = 0.

8. if
(
〈MX�〉i 6= 0 and ROOBi = 0 and NOOPi = 0

)
then

(a) if 〈 ♦MXT〉 6= memExpType0 then
i. if 〈MXX〉i = 0 then

A. if CTi 6= 3 then  CTi+1 = 1 + CTi

〈MX�〉i+1 = 〈MX�〉i
〈MXX〉i+1 = 〈MXX〉i

B. if CTi = 3 then 〈MX�〉i+1 = 1 + 〈MX�〉i
ii. if 〈MXX〉i = 1 then

149

A. if CTi 6= 16 then  CTi+1 = 1 + CTi

〈MX�〉i+1 = 〈MX�〉i
〈MXX〉i+1 = 〈MXX〉i

B. if CTi = 16 then 〈MX�〉i+1 = 1 + 〈MX�〉i

9. if
(
〈MX�〉N 6= 0 and ROOBN = 0

)
then

(a) if 〈 ♦MXT〉i = memExpType0 there are no “end of the execution trace” constraints
(b) if 〈 ♦MXT〉i 6= memExpType0 then

i. if 〈MXX〉N = 0 then CTN = 3;
ii. if 〈MXX〉N = 1 then CTN = 16.

In other words the module doesn’t terminate mid instruction.

6.2.2 Counter constancy
We say that a column X is counter-constant if it satisfies

∀i, CTi 6= 0 =⇒ Xi = Xi−1.

Note that 〈MX�〉 and 〈MXX〉 are counter-constant by construction. Note that counter constancy
of 〈MX�〉 implies counter constancy for all imported columns. The following columns are counter-
constant:

1. COMP

2. MXE

3. MSIZE

4. MSIZEν

5. MXC

6. MXCν

6.2.3 ROOB flag
The present section specifies the behaviour of the RIDICULOUSLY_OUT_OF_BOUNDS column (i.e.
ROOB). Its behaviour depends on the memory expansion type of the instruction at hand.

1. if 〈MX�〉i = 0 then ROOBi = 0;

2. if 〈 ♦MXT〉i = memExpType0 then ROOBi = 0;

3. if
(
〈 ♦MXT〉i = memExpType1a or 〈 ♦MXT〉i = memExpType1b

)
then

{
if 〈 1VAL hi〉i 6= 0 then ROOBi = 1

if 〈 1VAL hi〉i = 0 then ROOBi = 0

4. if 〈 ♦MXT〉i = memExpType2 then

ROOBi = 1 ⇐⇒


〈 3VAL hi〉i 6= 0

or(
〈 1VAL hi〉i 6= 0 and 〈 3VAL lo〉i 6= 0

)

150

This translates to
if ROOBi = 1 then

(
〈 3VAL hi〉i 6= 0 or 〈 1VAL hi〉i · 〈 3VAL lo〉i 6= 0

)
if ROOBi = 0 then

{
〈 3VAL hi〉i = 0 and
〈 1VAL hi〉i · 〈 3VAL lo〉i = 0

5. if 〈 ♦MXT〉i = memExpType3 then

ROOBi = 1 ⇐⇒


〈 3VAL hi〉i 6= 0 or(
〈 1VAL hi〉i 6= 0 and 〈 3VAL lo〉i 6= 0

)
or

〈 4VAL hi〉i 6= 0 or(
〈 2VAL hi〉i 6= 0 and 〈 4VAL lo〉i 6= 0

)
In constraints this becomes

if ROOBi = 1 then


〈 3VAL hi〉i 6= 0 or
〈 1VAL hi〉i · 〈 3VAL lo〉i 6= 0 or
〈 4VAL hi〉i 6= 0 or
〈 2VAL hi〉i · 〈 4VAL lo〉i 6= 0

if ROOBi = 0 then


〈 3VAL hi〉i = 0 and
〈 1VAL hi〉i · 〈 3VAL lo〉i = 0 and
〈 4VAL hi〉i = 0 and
〈 2VAL hi〉i · 〈 4VAL lo〉i = 0

We provide some context. If 〈 ♦MXT〉i = memExpType0 then the instruction is MSIZE which takes no
size or offset arguments and can’t provoke an out of bounds error. Thus ROOBi = 0 automatically.
If 〈 ♦MXT〉i = memExpType1a or 〈 ♦MXT〉i = memExpType1b then the instruction is one of MLOAD,
MSTORE, MSTORE8. It takes an offset (1VAL) as its sole memory-expansion-relevant-argument. Offsets
that are greater than 4 bytes may never occur because of gas related expenses, let alone offsets that
occupy > 16 bytes (as witnessed by 〈 1VAL hi〉 6= 0.) If 〈 ♦MXT〉i = memExpType2 the instruction
takes offset (1VAL) and size (3VAL) arguments. For such an instruction to be ridiculously out of
bounds either its size parameter has to be huge (as witnessed by 3VAL hi 6= 0) or its offset parameter
has to be huge and its size parameter nonzero (as witnessed by 1VAL hi 6= 0 and 3VAL 6= 0.) The case
〈 ♦MXT〉i = memExpType3 is entirely analoguous to memExpType2 except that there are two (offset, size)
pairs to consider.

6.2.4 NOOP flag
The present section computes the NOOP flag. Its definition is simple: a noop from the point of view
of memory expansion happens precisely when all relevant size parameters are zero. No-op dependent
constraints are subordinate to ROOB = 0, in other words: the value of NOOP matters only when
ROOB = 0. As such the zk-evm focuses on the low part of the size parameter(s). The “no-operation”
check could be handled in the main execution trace, but for simplicity it is handled in the present
module.

1. if 〈MX�〉i = 0 then NOOPi = 04

2. if 〈MX�〉i 6= 0 then
4Note that this condition is redundant: it was already imposed in the heartbeat section 13.2.1

151

(a) if ROOBi = 1 then NOOPi = 1

(b) if ROOBi = 0 then
i. if 〈 ♦MXT〉i = memExpType0 then NOOPi = 1

ii. if 〈 ♦MXT〉i = memExpType1a then NOOPi = 0

iii. if 〈 ♦MXT〉i = memExpType1b then NOOPi = 0

iv. if 〈 ♦MXT〉i = memExpType2 then{
if 〈 3VAL lo〉i = 0 then NOOPi = 1

if 〈 3VAL lo〉i 6= 0 then NOOPi = 0

v. if 〈 ♦MXT〉i = memExpType3 then NOOPi = 0
if

(
〈 3VAL lo〉i = 0 and 〈 4VAL lo〉i = 0

)
then NOOPi = 1

if 〈 3VAL lo〉i 6= 0 then NOOPi = 0

if 〈 4VAL lo〉i 6= 0 then NOOPi = 0

We further settle the expected behaviour in case of a (from the point of view of the memory expan-
sion module) noop. No memory expansion happens, memory size remains the same. The associated
constraints are thus:

1. if NOOPi = 1 then

〈∆MXC〉i = 0
MSIZEν

i = MSIZEi

MXCν
i = MXCi

if 〈 ♦MXT〉i = memExpType0 then

{
〈 4VAL hi〉i = 0

〈 4VAL lo〉i = MSIZEi

Recall that MSIZE is the only type 0 instruction. The constraints in that case push the memory size
onto the stack.

6.2.5 Byte decompositions
We impose the following constraints, for k = 0, 2, . . . , 6

1. if CTi = 0 then ACC_ki = BYTE_ki

2. if CTi 6= 0 then ACC_ki = 256 · ACC_ki−1 + BYTE_ki

The byte columns BYTE_7 and BYTE_8 serve a different purpose: rather than partake in a classical
byte decomposition, they are used to store auxiliary bytes. They only play a role in case ROOB =
NOOP = 0. We further impose bytehood constraints in all 8 byte columns BYTE_0, . . . ,BYTE_8.

6.3 Specialized constraints
6.3.1 Standing hypothesis

All constraints in section 6.3 and all its subsections assume 〈MX�〉i 6= 0,NOOPi = 0 and ROOBi = 0

152

6.3.2 Max offsets
This section defines maximal offsets. We define a pair of maximal offsets (even in case the instruction
requires only one offset, size pair). Definitions depend on the memory expansion type.

1. if 〈 ♦MXT〉i = memExpType1a{
LAST_OFFSET1

i = 〈 1VAL lo〉i + 31

LAST_OFFSET2
i = 0

2. if 〈 ♦MXT〉i = memExpType1b {
LAST_OFFSET1

i = 〈 1VAL lo〉i
LAST_OFFSET2

i = 0

3. if 〈 ♦MXT〉i = memExpType2{
LAST_OFFSET1

i = 〈 1VAL lo〉i + 〈 3VAL lo〉i − 1

LAST_OFFSET2
i = 0

4. if 〈 ♦MXT〉i = memExpType3

{
if 〈 3VAL lo〉i 6= 0 then LAST_OFFSET1

i = 〈 1VAL lo〉i + 〈 3VAL lo〉i − 1

if 〈 3VAL lo〉i = 0 then LAST_OFFSET1
i = 0{

if 〈 3VAL lo〉i 6= 0 then LAST_OFFSET2
i = 〈 2VAL lo〉i + 〈 4VAL lo〉i − 1

if 〈 3VAL lo〉i = 0 then LAST_OFFSET2
i = 0

Let us clarify the preceding constraints. In the case where 〈 ♦MXT〉i = memExpType2 the standing
assumption NOOPi = 0 implies that 〈 3VAL lo〉i ≥ 1. In the case where 〈 ♦MXT〉i = memExpType3 it
can happen that 〈 1VAL lo〉i = 〈 3VAL lo〉i = 0 or 〈 2VAL lo〉i = 〈 4VAL lo〉i = 0 (but, given our standing
assumption that NOOPi = 0, not both.) To prevent having one LAST_OFFSET be equal to −1 we
test for nullity of sizes.

The LAST_OFFSET2 and LAST_OFFSET2 thus produced are nonnegative and the sum of two 16
byte integers. They are thus 17 byte integers.

6.3.3 Offsets are out of bounds
This subsection is about justifying raising the 〈MXX〉 flag if one (at least) of the max offsets isn’t a
4-byte integer.

1. if
(
〈MXX〉i = 1 and CTi = 16

)
then(

LAST_OFFSET1
i − 2564 − ACC_1i

)
·
(

LAST_OFFSET2
i − 2564 − ACC_2i

)
= 0.

in other words one of LAST_OFFSET1 or LAST_OFFSET2 is ≥ 2564

153

6.3.4 Offsets are in bounds
Preliminary computations

This section computes memory expansion in case both maximal offsets are in bounds. The first point
is to establish this bound assertion. We then compare the two maximal offsets and store the greatest
of the two in MAX_OFFSET.

All constraints in this subsection further assume that 〈MXX〉i = 0 and CTi = 3.

1. The zk-evm computes, for instructions of 〈 ♦MXT〉i = memExpType2 the number of evm-words
dsize/32e the data to hash or copy occupies:

if 〈 ♦MXT〉i = memExpType2 then
{
〈 3VAL lo〉 = 32 · ACC_0i − BYTE_7i−2

BYTE_7i−3 = (256− 32) + BYTE_7i−2

Note that the bytehood constraint on BYTE_7 enforces BYTE_7i−2 ∈ {0, 1, . . . , 31}.

2. The zk-evm confirms smallness of both LAST_OFFSET1 and LAST_OFFSET2:{
ACC_1i = LAST_OFFSET1

i

ACC_2i = LAST_OFFSET2
i

In other words, LAST_OFFSET1 and LAST_OFFSET2 are both 4-byte integers;

3. The zk-evm compares LAST_OFFSET1 and LAST_OFFSET2:

ACC_3i =
(
LAST_OFFSET1

i − LAST_OFFSET2
i

)
· (2 · COMPi − 1) + (COMPi − 1)

In other words: {
COMP = 1 ⇐⇒ LAST_OFFSET1 ≥ LAST_OFFSET2

COMP = 0 ⇐⇒ LAST_OFFSET1 < LAST_OFFSET2

4. The zk-evm sets MAX_OFFSETi to be the maximum of the two max offsets:

MAX_OFFSETi = COMPi · LAST_OFFSET1
i + (1− COMPi) · LAST_OFFSET2

i

In other words,{
if LAST_OFFSET1 ≥ LAST_OFFSET2 then MAX_OFFSET = LAST_OFFSET1

if LAST_OFFSET1 < LAST_OFFSET2 then MAX_OFFSET = LAST_OFFSET2

5. The zk-evm decides whether memory expansion took place

ACC_4i =
(
MAX_OFFSETi + 1−MSIZEi

)
· (2 ·MXEi − 1)−MXEi.

In other words, {
MXE = 1 ⇐⇒ MAX_OFFSET + 1 > MSIZE
MXE = 0 ⇐⇒ MAX_OFFSET + 1 ≤ MSIZE

6. Some parameters are updated

(a) if MXEi = 0 then {
MSIZEν

i = MSIZEi,
MXCν

i = MXCi,

In other words: if no memory expansion took place then MSIZE and MXC don’t change .
(b) if MXEi = 1 then {

MSIZEν
i = MAX_OFFSETi + 1

MXCν
i = … next section …

in other words, if memory expansion took place then we update the memory size; the
updated expansion cost will be computed in the following section.

154

Memory expansion cost update

All constraints in this subsection further assume that 〈MXX〉i = 0,CTi = 3 and MXEi = 1.

We compute the updated expansion cost. The following constraints apply iff MXE = 1 in the current
counter-cycle.

1. ACC_5 accumulates the bytes of dMSIZEν
i /32e:{

MSIZEν
i = 32 · ACC_5i − BYTE_7i

BYTE_7i−1 = BYTE_7i + (256− 32) (1)

The bytehood constraint on BYTE_7 and (1) imply that r := BYTE_7i ∈ {0, 1, . . . , 31}. This
verifies eq. (♣).

2. ACC_6 accumulates the first 4 bytes of the euclidean division of ACC_52i by 512:
ACC_52i = 512 ·

(
ACC_6i + 2564 · BYTE_8i−2 + 2564+1 · BYTE_8i−3

)
+256 · BYTE_8i−1 + b

BYTE_82i−1 = BYTE_8i−1

(F)

3. We settle MXCν :
MXCν

i = Gmem · ACC_5i
+ACC_6i
+2564 · BYTE_8i−2

+2564+1 · BYTE_8i−3

4. verify the gas expansion cost:
〈∆MXC〉i = MXCν

i −MXCi.

We provide some explanatory details regarding equations (F). What is being verified is the following

ACC_52i = 512 · q′ + r′ (4)

q′ := ACC_6i + 2564 · b4 + 2564+1 · b5 (3)
r′ := 256 · ε+ b (2)
ε is a bit i.e. ε2 = ε (1)

b4 := BYTE_8i−2

b5 := BYTE_8i−3

ε := BYTE_8i−1

b := BYTE_8i

(1) verifies that ε := BYTE_8i−1 is a bit; (2) verifies that r′ ∈ {0, 1, . . . , 511}; (3) verifies that q′ is a
6-byte integer; (4) verifies the euclidean division of ACC_52i by 512; together they verify Eq. (♠).

6.4 Consistency constraints
We impose consistency constraints. Consider a row permutation X [X]� such that the rows of the
following columns are listed in lexicographic order:(

[〈CN〉]� , [〈MX�〉]�
)

We write “a row permutation” since there may be some (inconsequential) ambiguity: the module can
start with an arbitrary number of null rows. Otherwise the ordering is unique. This row permutation

155

groups together, in chronological order, all instructions raising the memory expansion flag executed
within the same execution context. The constraints below thus impose coherence between values of
MSIZE and MXC that may be separated (in the temporal execution trace) by memory expanding
instructions in a descendant context.

1. if [〈CN〉]�i 6= 0:

(a) if [〈CN〉]�i+1 = [〈CN〉]�i then {
[MSIZE]�i+1 = [MSIZEν

i]
�

[MXC]�i+1 = [MXCν
i]

�

(b) if [〈CN〉]�i+1 6= [〈CN〉]�i then {
[MSIZE]�i+1 = 0

[MXC]�i+1 = 0

156

Chapter 7

Gas

7.1 Purpose
7.1.1 Purpose
The present document is a revised and expanded version of a previous (partial) specification of a
zk-evm.

7.1.2 Triggers
The gas module is triggered by both exceptions and (context switching) instructions. The instructions
that always trigger a call to this module are:

1. STOP

2. RETURN

3. REVERT

4. SELFDESTRUCT

5. CREATE

6. CREATE2

7. CALL

8. CALLCODE

9. STATICCALL

10. DELEGATECALL

Furthermore, any exception triggers a call to the present module. Out of gas exception behave differ-
ently from other exceptions in this respect.

We define CALL-type instructions to be any instruction among CALL, CALLCODE, STATICCALL,
DELEGATECALL. We define CREATE-type instructions to be CREATE and CREATE2 instructions.

7.2 Columns
7.2.1 Column descriptions

1. 〈GASω〉: imported column containing the «old gas»; its value is computed in the Hub;

2. 〈GASκ〉: imported column containing the «current gas»; its value is computed in the Hub;

3. 〈GASν〉: imported column containing the «new gas»; its value is computed in the present module;

4. 〈GASε〉: imported column containing the «gas endowment»; its value is computed in the present
module;

The old gas 〈GASω〉 is the gas available before the instruction starts processing. The current gas
〈GASκ〉 is the gas available after adding refunded gas (from successfully exiting a context or exiting
via a REVERT instruction) and subtracting static gas costs and dynamic gas cost. Note that we define

157

https://ethresear.ch/t/a-zk-evm-specification/11549
https://ethresear.ch/t/a-zk-evm-specification/11549

dynamic gas cost as the sum of (a) memory expansion cost (b) linear costs for (b).(i) hashing (i.e.
SHA3 and CREATE2) (b).(ii) copying (for RETURNDATACOPY, CALLDATACOPY, CODECOPY, EXTCODECOPY),
(b).(iii) code deployment (for RETURN in a deployment context), (b).(iv) logging (for LOG0-LOG4 (c)
dynamic costs for SLOAD and SSTORE (d) address access costs (e) account existence cost (f) value
transfer cost (for CALLs and CREATEs.) Note that this excludes costs child context gas endowments.
The gas endowment 〈GASε〉 is the part of the gas endowment gifted by a parent context to its
descendant context spawned through a CREATE-type instruction or CALL-type instruction. The new
gas 〈GASν〉 is the gas available after processing the instruction. It is obtained as either the or the Note
that 〈GASν〉 doesn’t include gas refunds which may take place when exiting an execution context.

5. 〈 ♦L_FLAG〉: imported binary column;

6. 〈 ♦CALL� 〉: imported binary column; lights up precily for CALL-type instructions;

The instruction decoded ♦L_FLAG lights up precisely for instructions which require the evaluation of
the L function on some inputs. Recall that the L function si defined as

L(x) = x− bx/64c.

The instruction decoded ♦CALL� lights up precisely for CALL-type instructions, i.e. CALL, CALLCODE,
DELEGATECALL, STATICCALL.

7. 〈 1VAL hi〉, 〈 1VAL lo〉: imported columns containing the high and low part of the first stack item;

8. 〈GENERAL_EXCEPTION〉: imported binary flag signaling whether an exception occurs at the
current instruction;

9. 〈OOGX〉: imported binary flag signaling an out of gas exception;

10. 〈MXX〉: imported binary flag; signals whether memory expansion produced a gas cost so large it
single handedly excedes 2564;

11. LARGE_BYTE_DECOMPOSITION_FLAG: binary flag that indicates whether a byte decompo-
sition is required; abbreviated to LBDF;

The 〈MXX〉 was justified in the memory expansion module. For CALL-type instructions 〈 1VAL〉 contains
the gas parameter.

12. CT: counter column; counts either from 0 to 3 or from 0 to 5 depending on 〈OOGX〉;

7.3 Constraints
7.3.1 Heartbeat
The heartbeat of the gas module depends on the instruction at hand and on whether an out of gas
exception occurred or not. We give more context. The zk-evm works under the assumption that the
initial gas provided in the transaction is a 4-byte integer (i.e. ≤ 4.3 BGas.) An execution context’s
gas is continuously depleted as instructions pour in. The zk-evm raises the outOfGasExceptionFlag
at row i iff

GASω
i ≥ 0 and GASκ

i < 0.

The largest amount of gas that can be subtracted from the old gas to obtain the current gas comes from
memory expansion. If the memory expansion module raised the 〈MXX〉 flag the memory expansion
gas is so large as to require no further verification for the assertion GASκ

i < 0; thus only GASω
i ≥ 0

needs to be proven. We impose the following constraints:

1. 〈GAS � 〉0 = 0; furthermore if 〈GAS � 〉i = 0 then the whole row is null;

158

2. 〈GAS � 〉 is nondecreasing, i.e. 〈GAS � 〉i+1 ∈ {〈GAS � 〉i, 1 + 〈GAS � 〉i};

3. if 〈GAS � 〉i+1 6= 〈GAS � 〉i then CTi+1 = 0;

4. if 〈MXX〉i = 1 then 〈OUT_OF_GAS_EXCEPTION〉i = 1, furthermore

(a) if CTi 6= 3 then {
CTi+1 = 1 + CTi,
〈GAS � 〉i+1 = 〈GAS � 〉i,

(b) if CTi = 3 then {
CTi+1 = 0,
〈GAS � 〉i+1 = 1 + 〈GAS � 〉i,

5. if 〈MXX〉i = 0 then

(a) if 〈OUT_OF_GAS_EXCEPTION〉i = 1:
i. if CTi 6= 5 then CTi+1 = 1 + CTi,
ii. if CTi = 5 then CTi+1 = 0,

(b) if 〈OUT_OF_GAS_EXCEPTION〉i = 0:
i. if LBDFi = 1 then

A. if CTi 6= 15 then CTi+1 = 1 + CTi,
B. if CTi = 15 then CTi+1 = 0,

ii. if LBDFi = 0 then
A. if CTi 6= 3 then CTi+1 = 1 + CTi,
B. if CTi = 3 then CTi+1 = 0.

We provide some details below:

• 〈MXX〉 = 1 if and only if the memory expansion module noticed that a size parameter of
the present instuction is so large as to drive the memory expansion gas cost completely out of
bounds. In this case the 〈OUT_OF_GAS_EXCEPTION〉 exception is necessarily set and the gas
module is only required to prove that the old gas 〈GASω〉 is nonnegative. Given that the original
transaction gas is a 4-byte integer and gas can only decrement, the old gas amount 〈GASω〉 must
be a (nonnegative) 4-byte integer.

• 〈MXX〉 = 0 can mean several things.

– If 〈OUT_OF_GAS_EXCEPTION〉 = 1 then the zk-evm checks for 〈GASω〉 ≥ 0 being a 4-byte
integer and 〈GASκ〉 < 0: 〈GASκ〉 is obtained in the main execution trace by subtracting
static gas and dynamic gas from 〈GASω〉 (and potentilally adding refunded gas from a
successful CALL-type instruction or CREATE-type instruction.) 〈MXX〉 = 0 implies that the
dynamic gas cost is a 6-byte integer and thus −〈GASκ〉 > 0 is one, too.

– If 〈OUT_OF_GAS_EXCEPTION〉 = 0 there is no out of gas exception i.e. 〈GASκ〉 must be a
nonnegative 4 byte integer. The only case that requires inquiry is that of a CALL-type instruc-
tion whose gas parameter is large so that LARGE_BYTE_DECOMPOSITION_FLAG = 1 i.e.
〈 1VAL hi〉 = 0 and 〈 1VAL lo〉 > L(〈GASκ〉). Establishing this inequality requires a 16-byte-
decomposition.

Largeness of the gas parameter is defined as 〈 1VAL hi〉 6= 0 or 〈 1VAL lo〉 > L(〈GASκ〉). Note that
whenever 〈 1VAL hi〉 6= 0 the gas parameter is very large but establishing this requires no byte decom-
position.

The constraints that follow are the usual constraints that impose that the last instruction is carried
out to completion.

159

6. if 〈MXX〉N = 1 then CTN = 3

7. if 〈MXX〉N = 0 then

(a) if 〈OUT_OF_GAS_EXCEPTION〉N = 1 then CTN = 5

(b) if 〈OUT_OF_GAS_EXCEPTION〉N = 0:

i. if
(
〈 ♦CALL� 〉N = 1 and LBDFN = 1

)
then CTN = 15

ii. if 〈 ♦CALL� 〉N = 0 or
(
〈 ♦CALL� 〉N = 1 and LBDFN = 0

)
then CTN = 3

Note: the original formulation of the finalization constraints concluded with

1. …

2. if 〈OUT_OF_GAS_EXCEPTION〉N = 0:

(a) if
(
〈 ♦CALL� 〉N = 1 and LBDFN = 1

)
then CTN = 15

(b) if 〈 ♦CALL� 〉N = 0 or
(
〈 ♦CALL� 〉N = 1 and LBDFN = 0

)
then CTN = 3

The present formulation is quicker and equivalent.

7.3.2 Constancy constraints
We say that a column X is 〈GAS � 〉-constant if it satisfie

〈GAS � 〉i+1 = 〈GAS � 〉i =⇒ Xi+1 = Xi.

Imported columns are automatically 〈GAS � 〉-constant. We further ask that LBDF be 〈GAS � 〉-
constant.

7.3.3 Byte decompositions
We impose the following byte decomposition constraints.

1. if 〈GAS � 〉i+1 6= 〈GAS � 〉i then ACC_ki+1 = BYTE_ki+1

2. if 〈GAS � 〉i+1 = 〈GAS � 〉i then ACC_ki+1 = 256 · ACC_ki + BYTE_ki+1

These apply for k = 1, 2, 3, 4. We further impose bytehood constraints on BYTE_k, k = 1, 2, 3, 4, 5.

7.3.4 The LARGE_BYTE_DECOMPOSITION_FLAG
The LARGE_BYTE_DECOMPOSITION_FLAG flag is set whenever a CALL-type instruction has a large
gas parameter. Note that it intervenes only for CALL-type instructions with 〈MXX〉 = 0. These are the
associated constraints:

1. if 〈 ♦CALL� 〉i = 0 then LBDFi = 0;

2. if
(
〈 ♦CALL� 〉i = 1 and 〈 1VAL hi〉i 6= 0

)
then LBDFi = 0.

Thus LBDFi = 1 may only hapen if both 〈 ♦CALL� 〉i = 1 and 〈 1VAL hi〉i = 0 i.e. the underlying
instruction is a CALL-type instruction and its gas parameter is a 16-byte integer. In this case it will
hold that {

LBDFi = 1 ⇐⇒ 〈 1VAL lo〉i ≤ (maxGasAllowance)
LBDFi = 0 ⇐⇒ 〈 1VAL lo〉i > (maxGasAllowance)

With maxGasAllowance = L(〈GASκ〉i).

160

7.3.5 Target constraints
The target constraints reproduce the logic of the heartbeat.

1. if 〈MXX〉i = 1 and CTi = 3 then

〈GASω〉i = ACC_1i

This establishes that before executing the instruction the remaining gas was nonnegative.

2. if 〈MXX〉i = 0 then

(a) if
(
〈OUT_OF_GAS_EXCEPTION〉i = 1 and CTi = 5

)
then{

〈GASω〉i = ACC_1i
−〈GASκ〉i + 1 = ACC_2i

This establishes that 〈GASω〉i ≥ 0 and 〈GASκ〉i < 0

(b) if 〈OUT_OF_GAS_EXCEPTION〉i = 0 then
i. LBDFi = 0 and CTi = 3 then

A. {
〈GASω〉i = ACC_1i
〈GASκ〉i = ACC_2i

Note: the first target constraint is redundant.
B. if 〈 ♦L_FLAG〉i = 1 then

• the zk-evm computes b〈GASκ〉i/64c:{
〈GASκ〉i = 64 · ACC_3i + BYTE_5i
BYTE_5i−1 = BYTE_5i + (256− 64)

In other words, ACC_3i = b〈GASκ〉/64c. The second constraint witnesses the
fact that BYTE_5i ∈ {0, 1, . . . , 63} is the remainder.

• if 〈 ♦CALL� 〉i = 0 then{
〈GASε〉i = 〈GASκ〉i − ACC_3i
〈GASν〉i = ACC_3i

〈 ♦L_FLAG〉i = 1 and 〈 ♦CALL� 〉i = 0 corresponds to a CREATE/CREATE2 instruc-
tion. The above computes the (63/64)ths of the currently available gas 〈GASκ〉i
which are provided to the descendant context and the new gas balance of the
current context (pre gas refund from exiting the descendant context).

• if 〈 ♦CALL� 〉i = 1 then
if 〈 1VAL hi〉i = 0 then


〈GASκ〉i − ACC_3i − 〈 1VAL lo〉i = ACC_4i (?)

〈GASε〉i = 〈 1VAL lo〉i
〈GASν〉i = 〈GASκ〉i − 〈 1VAL lo〉i

if 〈 1VAL hi〉i 6= 0 then

{
〈GASε〉i = 〈GASκ〉i − ACC_3i
〈GASν〉i = ACC_3i

〈 ♦L_FLAG〉i = 1 and 〈 ♦CALL� 〉i = 1 corresponds to a CALL-type instructions.
Constraint (?) means that the maximum gas allowance that the instruction tries
to pass down to the descendant context is ≤ the maximum gas allowance that
the present context may pass down to a descendant context.

161

ii. if LBDFi = 1 and CTi = 15 then
A. {

〈GASω〉i = ACC_1i
〈GASκ〉i = ACC_2i

Note: the first target constraint is (again) redundant.
B.  〈 1VAL lo〉i −

(
〈GASκ〉i − ACC_3i + 1

)
= ACC_4i (??)

〈GASε〉i = 〈GASκ〉i − ACC_3i
〈GASν〉i = ACC_3i

Constraint (??) means that 〈 1VAL lo〉i > 〈GASκ〉i − ACC_3i = L(〈GASκ〉i), the
maximum gas allowance of a descendant context. As such the descendant context is
endowed with L(〈GASκ〉i) (which may be augmented by a call stipend Gcallstipend =
2300 if the CALL-type instruction includes a value transfer.)

Note that LBDFi = 1 may only happen when the present instruction is a CALL-type
instruction.

162

Chapter 8

Storage

8.1 Storage module
8.1.1 Storage instructions
The storage module deals with SSTORE and SLOAD. It is sensitive to exceptions (including REVERT
instructions.) Storage instructions (i.e. SSTORE and SLOAD) are precisely the instruction which raise
the STORAGE_FLAG in the Hub.

8.1.2 Column descriptions
1. 〈STORAGE_STAMP〉: imported column containing the Hub’s storage stamp; abbreviated to 〈STO�〉;

The STORAGE_STAMP column in the Hub grows by one with every storage instruction.
The following columns contain imported columns that represent “execution context variables.”

These play a role for reordering arguments.

2. 〈TX#〉: imported column containing the transaction number;

3. 〈CN〉: imported column containing the current execution context;

4. 〈STO�REV〉: import of a context-number constant column; contains the storage time stamp at
which a revert is to occur; the current context reverts iff 〈STO�REV〉 6= 0.

Every execution context C has a reverter context R (if C does not revert its reverter is the special
0th execution context.) Otherwise it is the nearest ancestor context of C which is directly responsible
for a rollback. A context C may be its own reverter. We say that an execution context is directly
responsible for reverting if its execution leads to an exception or a (successful) REVERT instruction.

The imported 〈STO�REV〉 column contains 0 if the current context does not revert. Otherwise
it contains the storage stamp at which the (present context’s) reverter context R reverts. This time
stamp is common to all contexts that have R as their reverter context. While every child context of
R reverts they may do so for different reasons and at different 〈STO�REV〉. Indeed, it can happen
that a context which inherits a revert flag also produces its own exception. In this case it is its own
reverter and defines its own revert time stamp (which it passes down to all its descendant contexts.)

5. 〈INST〉: imported column containing the current instruction;

6. VAL hi and VAL lo: contain the high and low part of a value in storage as the instruction starts
execution;

7. 〈VAL hi〉ν and 〈VAL lo〉ν : imported columns containing the value in storage after execution of the
instruction;

163

Given the stack pattern for storage instructions, 〈VAL hi〉ν and 〈VAL lo〉ν are imports of the 4th stack
item 4VAL hi and 4VAL lo. Note that VAL hi and VAL lo aren’t imported columns. This is because
〈VAL hi〉ν and 〈VAL lo〉ν are the values that will find themselves on the stack after the instruction
is done while VAL hi and VAL lo are the values in storage before anything happens. In case of an
〈INST〉 = SLOAD these values are the same. In case of an 〈INST〉 = SSTORE the imported values are
meant to replace the pre-existing values.

8. 〈STORAGE_ADDRESS〉 hi and 〈STORAGE_ADDRESS〉 lo: imported columns; contain the address
of the contract whose storage may be altered by the current execution context; abbreviated to
〈SADDR〉 hi and 〈SADDR〉 lo respectively;

9. 〈STORAGE_KEY〉 hi and 〈STORAGE_KEY〉 lo: imported columns; contain the storage key ac-
cessed by the current instruction; abbreviated to 〈KEY〉 hi and 〈KEY〉 lo respectively;

As in the case of values, the stack pattern of storage instructions imposes that 〈KEY〉 hi and 〈KEY〉 lo

are imports of the first stack item 1VAL hi and 1VAL lo. To simplify notations we may at times write
〈SADDR〉 and 〈KEY〉 to signify the pairs (〈SADDR〉 hi, 〈SADDR〉 lo) and (〈KEY〉 hi, 〈KEY〉 lo) respectively.
We do this even when defining (variations of) lexicographic orders. Thus when we write a1 < a2 for
addresses a1 and a2 it is to be understood as a hi

1 < a hi
2 or (a hi

1 = a hi
2 and a lo

1 < a lo
2) and similarly for

keys.
The values initially in storage are subject to constraints with the permanent state, as are the values

that are last set for a given address and key pair. Identifying the relevant rows is the job of FACCF
and LACCF detailed below.

10. FIRST_ACCESS_FLAG: binary flag; lights up precisely once per batch of transactions and per
(touched) storage key; lights up the first time that key is touched; abbreviated to FACCF;

11. LAST_ACCESS_FLAG: binary flag; lights up precisely once per batch of transactions and per
(touched) storage key; lights up the last time that key is touched; abbreviated to LACCF;

Pre-warmed storage keys that are never called upon by a storage instruction count as untouched. The
colunms below are required for gas metering and computing gas refunds.

12. ORIGINAL_VALUE hi and ORIGINAL_VALUE lo: contain the value in storage at the beginning of
a transaction (and thus may change from one transaction to another); abbreviated to ORIG hi

and ORIG lo respectively;

13. 〈STORAGE_GAS〉: storage gas cost; abbreviated to 〈STOG〉;

14. 〈REFUND_GAS〉: computes gas refunds which may be associated with an SSTORE instruction;
abbreviated to 〈REFG〉;

15. REFUND_DIRTY_CLEAR: computes the rdirtyclear refund function from the Ethereum Yellow
Paper; abbreviated to REFDC;

16. REFUND_DIRTY_RESET: computes the rdirtyreset refund function from the Ethereum Yellow
Paper; abbreviated to REFDR;

17. PREWARM: binary flag indicating whether a storage key was prewarmed for a transaction;

18. WARM: binary flag indicating whether a storage key is warm within the execution of a transac-
tion;

The DOM�−−−−−→ and SUB�←−−−− columns below play a technical role in reverting contexts. They are used to
unwind the successive changes made to storage. The subordinate stamp colum SUB�←−−−− will be endowed
with the opposite order from the natural one whence the arrow pointing to the left adorning it.

164

19. DOM�−−−−−→, SUB�←−−−−: “dominant” and “subordinate” stamp columns;

20. COUNTER: binary column; always equal to 0 except for storage instructions in a reverting
execution context; in this case it counts from 0 to 1; abbreviated to CT;

8.2 Constraints
8.2.1 Heartbeat
The heartbeat of the storage module is simple: the storage stamp grows by one with every row and the
counter column is ≡ 0. The only exception to that rule happens when executing storage instructions
in a reverting context. In this case every storage instruction occupies two rows (say i and i+ 1) with
CTi = 0, CTi+1 = 1 and STO�i = STO�i+1). Whether a context reverts or not can be read off the
〈STO�REV〉: if it is nonzero then the context reverts, otherwise it doesn’t.

1. 〈STO�〉0 = 0

2. if 〈STO�〉i = 0 then 
CTi = 0
CTi+1 = 0
DOM�−−−−−→i = 0

SUB�←−−−−i = 0

3. ∀i, 〈STO�〉i+1 ∈ {〈STO�〉i, 1 + 〈STO�〉i} i.e. 〈STO�〉 is nondecreasing with jumps = 1;

4. if 〈STO�〉i+1 6= 〈STO�〉i then CTi+1 = 0;

5. if 〈STO�〉i 6= 0

(a) 〈STO�REV〉i = 0 then 〈STO�〉i+1 = 1 + 〈STO�〉i
(b) 〈STO�REV〉i 6= 0 then

if CTi = 0 then


CTi+1 = 1

〈STO�〉i+1 = 〈STO�〉i
〈INST〉i+1 = 〈INST〉i

if CTi = 1 then 〈STO�〉i+1 = 1 + 〈STO�〉i

(Note that the constraint 〈INST〉i+1 = 〈INST〉i, when 〈STO�REV〉i 6= 0 and CTi = 0, is
redundant given the storage stamp remains the same)

6. if
(
〈INST〉N = SSTORE and 〈STO�REV〉N 6= 0

)
then CTN = 1.

Note that the only instructions being loaded in are SLOAD and SSTORE. We may thus replace equality
constraints such as “if 〈INST〉i = SLOAD then · · · ” with “if 〈INST〉i 6= SSTORE then · · · ”.

8.2.2 Prewarmed storage keys
Like in the warmth module (but unlike most other modules) rows with 〈STO�〉i = 0 serve a double
purpose: they are used both for padding and for loading pre-warmed storage keys. In constraints
we will enforce that

PREWARMi = 1 ⇐⇒
(
〈STO�〉i = 0 and 〈TX#〉i 6= 0

)
and that a key is only pre-warmed once per transaction. In accordance with the first condition we
impose that:

165

1. if PREWARMi = 1 then
(
〈STO�〉i = 0 and 〈TX#〉i 6= 0

)
;

2. if
(
〈STO�〉i = 0 and 〈TX#〉i 6= 0

)
then PREWARMi = 1;

The first task of the storage module is to load all prewarmed storage keys. Justifying the pre-
warmed addresses is done by means of a bilateral plookup inclusion proof where on one side we have[

〈TX#〉, 〈SADDR〉, 〈KEY〉
]
� PREWARM

and on the other side of that bilateral plookup we have a commitment to the prewarmed storage keys
per transaction. Prewarmed keys will be loaded at 〈STO�〉 = 0; this enforces that the corresponding
rows will appear first in the relevant row reordering.
Note. We have again, for simplicity’s sake, suppressed (·) hi and (·) lo in 〈SADDR〉 and 〈KEY〉.
Note. In the above we define Z def.

= X � Y to be the coordinate-wise product of the columns X and
Y, i.e. the column vector with, for all i, Zi = Xi · Yi. We extend the notation to families of column
vectors X1,X2, . . . ,Xr thus writing

[
X1, . . . ,Xr

]
� Y rather than

[
X1 � Y, . . . ,Xr � Y

]
.

8.2.3 Instruction related constraints
The instruction related constraints depend on whether the current instruction will be reverted or not.
For instance, and as mentioned in the heartbeat section, storage instructions in a reverting context
occupy two rows. The associated constraints are as follows.

We first deal with constraints in a non-reverting context:
1. if 〈STO�REV〉i = 0 then

(a) We set DOM�−−−−−→ and SUB�←−−−−: {
DOM�−−−−−→i = 2 · 〈STO�〉i
SUB�←−−−−i = 2 · 〈STO�〉i

(b) if 〈INST〉i = SLOAD then {
VAL hi

i = 〈VAL hi〉νi
VAL lo

i = 〈VAL lo〉νi
We next deal with contraints in a reverting context. We settle the expected behaviour at the first of
two rows.

2. if
(
〈STO�REV〉i 6= 0 and CTi = 0

)
then

(a) The following always hold:

SUB�←−−−−i = 2 · 〈STO�〉i
SUB�←−−−−i+1 = 2 · 〈STO�〉i

DOM�−−−−−→i = 2 · 〈STO�〉i
DOM�−−−−−→i+1 = 2 · 〈STO�REV〉i + 1

WARMi+1 = WARMi

(b) if 〈INST〉i = SSTORE then 
VAL hi

i+1 = 〈VAL hi〉νi
VAL lo

i+1 = 〈VAL lo〉νi
〈VAL hi〉νi+1 = VAL hi

i

〈VAL lo〉νi+1 = VAL lo
i

i.e. the “old” and “new” values are “swapped” from one line to the next.

166

(c) if 〈INST〉i = SLOAD then{
VAL hi

i+1 = VAL hi
i = 〈VAL hi〉νi = 〈VAL hi〉νi+1

VAL lo
i+1 = VAL lo

i = 〈VAL lo〉νi = 〈VAL lo〉νi+1

The figure below captures the expected behaviour of the storage module execution trace in a reverting
context. In it we focus solely on a give storage address and storage key.

〈CN〉 〈SA〉 〈KEY〉 〈S�R〉 〈STO�〉 〈INST〉 CT DOM�−−−−−→ SUB�←−−−− VAL 〈VAL〉ν WARM
...

...
...

...
...

...
...

...
...

...
...

...

c addr key revc s SLOAD 0 2 · s 2 · s v0 v0 w

c addr key revc s SLOAD 1 2 · revc + 1 2 · s v0 v0 w

c addr key revc s + 1 SSTORE 0 2 · (s + 1) 2 · (s + 1) v0 v 1

c addr key revc s + 1 SSTORE 1 2 · revc + 1 2 · (s + 1) v v0 1
...

...
...

...
...

...
...

...
...

...
...

...

c addr key revc s + k SSTORE 0 2 · (s + k) 2 · (s + k) v v′ 1

c addr key revc s + k SSTORE 1 2 · revc + 1 2 · (s + k) v′ v 1
...

...
...

...
...

...
...

...
...

...
...

...

c addr key revc s + l SLOAD 0 2 · (s + l) 2 · (s + l) v′ v′ 1

c addr key revc s + l SLOAD 1 2 · revc + 1 2 · (s + l) v′ v′ 1
...

...
...

...
...

...
...

...
...

...
...

...

c addr key revc s +m SLOAD 0 2 · (s +m) 2 · (s +m) v′ v′ 1

c addr key revc s +m SLOAD 1 2 · revc + 1 2 · (s +m) v′ v′ 1

c addr key revc s +m+ 1 SSTORE 0 2 · (s +m+ 1) 2 · (s +m+ 1) v′ v′′ 1

c addr key revc s +m+ 1 SSTORE 1 2 · revc + 1 2 · (s +m+ 1) v′′ v′ 1
...

...
...

...
...

...
...

...
...

...
...

...

Figure 8.1: The above represents a series of consecutive storage instructions executed in a reverting
(revc 6= 0) execution context (c) touching a given storage key (key) of a particular contract account
(with address addr.) Given that the present context reverts, (storage) instructions occupy 2 lines each.
There are three of them and three SLOAD instructions. The initial value of the WARM flag is w ∈ {0, 1}.
In the above 1 < k < l < m and m+ 1 ≤ revc.
We have used abbreviations to allow for more columns on a single page. Thus 〈SA〉 is short hand for
〈SADDR〉 and 〈S�R〉 is short hand for 〈STO�REV〉.

One may wonder why SLOAD instructions in reverting contexts also occupy two rows when all the
information they contain is duplicated. The answer lies in reverting the WARM flag: in terms of
unwinding modifications made to the value stored at a particular storage key if SLOAD instructions
(in reverting contexts) there would be no harm in making SLOAD instructions occupy a single line.
The issue arises with the WARM flag. The advantage of always using two rows to represent storage

167

instructions in reverting contexts is that the (original value of the) warmth flag finds itself both at
the beginning and at the end of the reordered sequence of modifications done to a particular address
independently of what storage instruction is executed first.

The figure below captures the expected behaviour of the reordered execution trace in a reverting
context:

[〈KEY〉]� [〈SADDR〉]�
[
DOM�−−−−−→

]
�

[
SUB�←−−−−

]
�

[VAL]� [〈VAL〉ν]� [WARM]
�

...
...

...
...

...
...

...

key addr 2 · s 2 · s v0 v0 w

key addr 2 · (s + 1) 2 · (s + 1) v0 v 1

key addr 2 · (s + k) 2 · (s + k) v v′ 1

key addr 2 · (s + l) 2 · (s + l) v′ v′ 1

key addr 2 · (s +m) 2 · (s +m) v′ v′ 1

key addr 2 · (s +m+ 1) 2 · (s +m+ 1) v′ v′′ 1

key addr 2 · revc + 1 2 · (s +m+ 1) v′′ v′ 1

key addr 2 · revc + 1 2 · (s +m) v′ v′ 1

key addr 2 · revc + 1 2 · (s + l) v′ v′ 1

key addr 2 · revc + 1 2 · (s + k) v′ v 1

key addr 2 · revc + 1 2 · (s + 1) v v0 1

key addr 2 · revc + 1 2 · s v0 v0 w
...

...
...

...
...

...
...

Figure 8.2: The above represents the same sequence of storage instructions but reordered. The “first
rows” of SLOAD and SSTORE instructions executed in a reverting execution context appear in the same
order as they do in the time ordered execution trace (but in immediate succession, i.e. without gaps).
The “second rows” appear at the tail end of the rows containing all accesses to the storage key key of
the account with address addr (and any access to the same key happening in a descendant context with
the same reverter.) They all have the same [〈STO�〉]� (which is equal to 〈STO�REV〉). The updates

to the value in storage are being “unwound” in reverse chronological order thanks to
[

SUB�←−−−−
]
�

having
the opposite order to the natural one.

8.3 Consistency
8.3.1 Batch level consistency
This section deals with constraints that capture batch-wide behaviours and properties of storage.
These include:

1. updating the value stored at a particular storage key across all transactions in the batch that
touch that storage key;

168

2. reverting said updates if the context that induced them reverts;

3. recognizing the first and last time a storage key is properly touched by a storage instruction;

The adverb properly is meant to distinguish “proper” or “real, instruction induced” accesses to storage
keys from pre-warming-related “non-accesses”. To make the distinction clear: the execution trace of
the storage module includes rows (with nonzero 〈TX#〉 but zero 〈STO�〉) that aren’t induced by a
storage instruction yet contain a nonzero transaction number, a storage address and a storage key.
Rows that are induced by an instructions have 〈STO�〉 6= 0.

We introduce a row permutation which groups together all “accesses”, proper or not, across all
transactions in the batch, to a given storage key k of a given storage address a. We show in figure ??
the desired effect this ordering has on storage in reverting contexts. This row permutation should be
such that, for fixed values of 〈SADDR〉 = a and 〈KEY〉 = k:

1. the rows with 〈SADDR〉 = a and 〈KEY〉 = k form a contiguous block;

2. the pre-warming rows (if any) are listed at the beginning of this block;

3. these may be followed by a succession of:

(a) first rows, in chronological order, of storage instructions, with 〈STO�〉 < 〈STO�REV〉;
(b) second rows, in reverse chronological order, of a subset of the previous storage instructions,

all with 〈STO�〉 = 〈STO�REV〉 for the same value or 〈STO�REV〉.

The “first row” of a storage instruction is characterized by CT = 0; the “second row” of a storage
instruction, if present, is characterized by CT = 1; the second rows unwind storage instruction per-
formed in a reverting context. Listing these second rows in reverse chronological order is what allows
to zk-evm to “unwind” storage instructions.

Consider a row permutation X 7→ [X]� such that the rows of the tuple of columns(
[〈SADDR〉]� , [〈KEY〉]� ,

[
DOM�−−−−−→

]
�

,
[

SUB�←−−−−
]
�

,
)

follow the following variation ≺ on the lexicographic order:

(a, k, s, r) ≺ (a′, k′, s′, r′) ⇐⇒


a < a′ or
a = a′ and k < k′ or
a = a′ and k = k′ and s < s′ or
a = a′ and k = k′ and s = s′ and r > r′

The fact that the final comparison is reversed explains our notation for SUB�←−−−−. We impose the
following consistency constraints:

1. if 〈STO�〉i = 0 then FACCFi = LACCFi = 0

2. if
(
[〈SADDR〉]�i+1 6= [〈SADDR〉]�i or [〈KEY〉]�i+1 6= [〈KEY〉]�i

)
then{

if [〈STO�〉]�i+1 6= 0 then [FACCF]�i+1 = 1

if [〈STO�〉]�i 6= 0 then [LACCF]�i = 1

169

3. if
(
[〈SADDR〉]�i+1 = [〈SADDR〉]�i and [〈KEY〉]�i+1 = [〈KEY〉]�i

)
then



if
(
[〈STO�〉i]� = 0 and [〈STO�〉i+1]

� 6= 0
)

then [FACCFi+1]
�

= 1

if [〈STO�〉i]� 6= 0 then



[
VAL hi

]
�

i+1
=

[
〈VAL hi〉ν

]
�

i[
VAL lo

]
�

i+1
=

[
〈VAL lo〉ν

]
�

i

[FACCF]�i+1 = 0

[LACCF]�i = 0

The condition means that at row i and i + 1 we are accessing the same storage key. Therefore
neither FIRST_ACCESS_FLAGi+1 nor LAST_ACCESS_FLAGi should be set.

4. if [〈STO�〉]�N 6= 0 then [LACCF]�N = 1.

8.3.2 Transaction level consistency
We introduce a second row permutation to deal with consistency constraints at the transaction level.
We require a row permutation that will group all rows that touch a particular storage key within a
given transaction into a block of contiguous rows. To that end, consider a row reordering X 7→ [X]�
such that the rows of the tuple of columns(

[〈TX#〉]� , [〈SADDR〉]� , [〈KEY〉]� ,
[
DOM�−−−−−→

]
�

,
[

SUB�←−−−−
]
�

,
)

follow the following variation on the standard lexicographic order:

(t, a, k, s, r) ≺ (t′, a′, k′, s′, r′) ⇐⇒


t < t′ or
t = t′ and a < a′ or
t = t′ and a = a′ and k < k′ or
t = t′ and a = a′ and k = k′ and s < s′ or
t = t′ and a = a′ and k = k′ and s = s′ and r > r′

We use this order to set the context entry flag for each storage slot. This flag is used in the temporal
trace to set the value at context entry of any storage key that is sollicited within the execution of a
particular context. We first enforce that

1. if 
[〈TX#〉]�i+1 6= [〈TX#〉]�i or
[〈SADDR〉]�i+1 6= [〈SADDR〉]�i or
[〈KEY〉]�i+1 6= [〈KEY〉]�i


then 

[WARM]
�

i+1 = [PREWARM]
�

i+1

if [〈STO�〉i+1]
� 6= 0 then


[
ORIG hi

i+1

]
�

=
[
VAL hi

i+1

]
�

[
ORIG lo

i+1

]
�

=
[
VAL lo

i+1

]
�

In other words: when entering a domain of rows pertaining either to the next transaction, a
different storage address or a different storage key, the initial warmth of the storage key is
determined by the PREWARM

170

2. if 
[〈TX#〉]�i 6= 0 and
[〈TX#〉]�i+1 = [〈TX#〉]�i and
[〈SADDR〉]�i+1 = [〈SADDR〉]�i and
[〈KEY〉]�i+1 = [〈KEY〉]�i


then

if [〈STO�〉i]� = 0 then



[〈STO�〉i+1]
� 6= 0 (1)

[WARM]
�

i+1 = 1 (3)[
ORIG hi

i+1

]
�

=
[
VAL hi

i+1

]
�

(4)[
ORIG lo

i+1

]
�

=
[
VAL lo

i+1

]
�

(4)

if [〈STO�〉i]� 6= 0 then



if
(
[CT]�i = 1 and [CT]�i+1 = 0

)
then [WARM]

�

i+1 = [WARM]
�

i (6)

if
(
[CT]�i = 0 and [CT]�i+1 = 0

)
then [WARM]

�

i+1 = 1 (7)[
ORIG hi

i+1

]
�

=
[
ORIG hi

i

]
�

(8)[
ORIG lo

i+1

]
�

=
[
ORIG lo

i

]
�

(8)

In the above (1) signifies that, when present, there is a single pre-warming line per transaction,
storage address and storage key; (3) signifies that a pre-warmed storage key starts out warm; (4)
sets the original value in storage for that transaction (which is required for SSTORE gas metering); (8)
propagates the original value; (6) recognizes the fact that rows i with [CT]�i = 1 are the second row of
a storage instruction in a reverting context and that when a storage instruction is reverted the warmth
of the touched storage key is reverted to its value prior to the instruction; (7) recognizes the fact that
if both [CT]�i+1 = [CT]�i = 0 then the access at (reordered row index) i + 1 follows an (as of yet)
unreverted access so that the storage key is warm. The precondition [〈STO�〉i]� 6= 0 implies that the
present line isn’t the first access to that storage slot, and thus the zk-evm must set WARMi+1 to true.

Note that we could have alternatively used the constraints

(
[CT]�i = 1 and [CT]�i+1 = 0

)
⇐⇒


[
DOM�−−−−−→

]
�

i
6=

[
SUB�←−−−−

]
�

i
and[

DOM�−−−−−→
]
�

i+1
=

[
SUB�←−−−−

]
�

i+1


and

(
[CT]�i = 0 and [CT]�i+1 = 0

)
⇐⇒


[
DOM�−−−−−→

]
�

i
=

[
SUB�←−−−−

]
�

i
and[

DOM�−−−−−→
]
�

i+1
=

[
SUB�←−−−−

]
�

i+1


8.3.3 Gas constraints
We now move on to computing 〈STORAGE_GAS〉 and 〈REFUND_GAS〉. We use the following notations
lifted from the Ethereum Yellow Paper:

171

1. Gwarmaccess = 100

2. Gcoldsload = 2100

3. Gsset = 20000

4. Gsreset = 2900

5. Rsclear = 15000

All constraints below assume that 〈STO�〉i 6= 0 and CTi = 0.

The STOG column contains the gas cost of an individual operation. It depends on the instruction and
other criteria.

1. if 〈INST〉i = SLOAD then{
if WARMi = 1 then STOGi = Gwarmaccess
if WARMi = 0 then STOGi = Gcoldsload

i.e. STOGi = Gwarmaccess ·WARMi +Gcoldsload · (1−WARMi).

2. if 〈INST〉i = SSTORE then

(a) if 
VAL hi

i = 〈VAL hi〉νi
and

VAL lo
i = 〈VAL lo〉νi

then
STOGi = Gwarmaccess +Gcoldsload · (1−WARMi)

(b) if 
VAL hi

i 6= ORIG hi
i

or
VAL lo

i 6= ORIG lo
i

then
STOGi = Gwarmaccess +Gcoldsload · (1−WARMi)

(c) if 

VAL hi
i = ORIG hi

i and
VAL lo

i = ORIG lo
i and

VAL hi
i 6= 〈VAL hi〉νi

or
VAL lo

i 6= 〈VAL lo〉νi


then
i. if

(
ORIG hi

i = 0 and ORIG lo
i = 0

)
then STOGi = Gsset +Gcoldsload · (1−WARMi)

ii. if
(

ORIG hi
i 6= 0 or ORIG lo

i 6= 0
)

then STOGi = Gsreset +Gcoldsload · (1−WARMi)

We now tackle 〈REFUND_GAS〉: 〈REFG〉 computes the gas refund associated with SSTORE instruc-
tions.

1. if 〈STO�REV〉i 6= 0 then 〈REFG〉i = 0

2. if 〈STO�REV〉i = 0 then

172

(a) if {
VAL hi

i = 〈VAL hi〉νi
VAL lo

i = 〈VAL lo〉νi
then 〈REFG〉i = 0

(b) if 


VAL hi

i 6= 〈VAL hi〉νi
or

VAL lo
i 6= 〈VAL lo〉νi

 and

VAL hi
i = ORIG hi

i and
VAL lo

i = ORIG lo
i and

〈VAL hi〉νi 6= 0

or
〈VAL lo〉νi 6= 0

 and

then 〈REFG〉i = 0

(c) if 


VAL hi

i 6= 〈VAL hi〉νi
or

VAL lo
i 6= 〈VAL lo〉νi

 and

VAL hi
i = ORIG hi

i and
VAL lo

i = ORIG lo
i and

〈VAL hi〉νi = 0 and
〈VAL lo〉νi = 0

then 〈REFG〉i = Rsclear

(d) if 


VAL hi

i 6= 〈VAL hi〉νi
or

VAL lo
i 6= 〈VAL lo〉νi

 and


VAL hi

i 6= ORIG hi
i

or
VAL lo

i 6= ORIG lo
i

 and

〈VAL hi〉νi = 0 and
〈VAL lo〉νi = 0

then 〈REFG〉i = REFDCi + REFDRi

At last, we constrain the REFDC and REFDR columns. We start with REFDC:

1. if ORIG hi
i = ORIG lo

i = 0 then REFDCi = 0

173

2. if 

 ORIG hi
i 6= 0

or
ORIG lo

i 6= 0

 and VAL hi
i 6= 0

or
VAL lo

i 6= 0

 and 〈VAL hi〉i 6= 0
or

〈VAL lo〉i 6= 0


then REFDCi = 0

3. if 

 ORIG hi
i 6= 0

or
ORIG lo

i 6= 0

 and

VAL hi
i = 0 and

VAL lo
i = 0 and

then REFDCi = −Rsclear

4. if 

 ORIG hi
i 6= 0

or
ORIG lo

i 6= 0

 and

〈VAL hi〉νi = 0 and
〈VAL lo〉νi = 0 and

then REFDCi = Rsclear

We deal with REFDR:

1. if  ORIG hi
i 6= 〈VAL hi〉νi

or
ORIG lo

i 6= 〈VAL lo〉νi


then REFDRi = 0

2. if {
ORIG hi

i = 〈VAL hi〉νi
ORIG lo

i = 〈VAL lo〉νi

}
then REFDRi = 0

(a) if {
ORIG hi

i = 0

ORIG lo
i = 0

}
then REFDRi = Gsset −Gwarmaccess

(b) if  ORIG hi
i 6= 0

or
ORIG lo

i 6= 0


then REFDRi = Gsreset −Gwarmaccess

174

Chapter 9

Word comparison

9.1 Word comparison module
9.1.1 Introduction
The word comparison module deals with the word comparison instructions of the evm, that is:

• LT • GT • SLT • SGT • EQ • ISZERO

9.1.2 Columns
We list the named columns of the word comparison module. The first two dictate its (simple) heartbeat.

1. 〈WCP � 〉: imported column containing the word comparison stamp;

2. ONE_LINE_INSTRUCTION: binary column; equals 1 if and only if 〈INST〉 ∈ {EQ, ISZERO};
abbreviated to OLI;

3. COUNTER: either hovers around 0 or counts continuously up from 0 to 15 and then resets;

4. 〈INST〉: imported column; contains the instruction;

5. 〈ARGUMENT_1_HIGH〉, 〈ARGUMENT_1_LOW〉: imported columns containing the high and
low part of the first instruction argument respectively; abbreviated to 〈ARG1 hi〉, 〈ARG1 lo〉;

6. 〈ARGUMENT_2_HIGH〉, 〈ARGUMENT_2_LOW〉: imported columns containing the high and
low part of the second instruction argument respectively; abbreviated to 〈ARG2 hi〉, 〈ARG2 lo〉;

7. 〈RESULT_HIGH〉, 〈RESULT_LOW〉: imported columns containing the high and low part of the
instruction result respectively; abbreviated to 〈RES hi〉, 〈RES lo〉;

Given the stack pattern of the word comparison instructions 〈ARG1 hi〉, 〈ARG1 lo〉 are imports of 1VAL hi

and 1VAL lo, 〈ARG2 hi〉, 〈ARG2 lo〉 of 3VAL hi and 3VAL lo, and 〈RES hi〉, 〈RES lo〉 of 4VAL hi and 4VAL lo

respectively. This is compatible with the stack pattern of ISZERO whose third stack item is vacuous.
Note furthermore that 〈RES hi〉 is expected to be 0 and 〈RES lo〉 should be binary.

8. BYTE_1, . . . ,BYTE_6: byte columns;

9. ACC_1, . . . ,ACC_6: “(byte) accumulator” columns;

10. [[1]], [[2]], [[3]], [[4]]: four counter-constant binary columns;

175

9.2 Constraints
9.2.1 Heartbeat
The heartbeat of the word comparison module is simple: if 〈WCP � 〉i 6= 0 and OLI = 0 then CT counts
continuously from 0 to 15, otherwise it is 0.

1. 〈WCP � 〉0 = 0;

2. 〈WCP � 〉 is nondecreasing in the sense that 〈WCP � 〉i+1 ∈ {〈WCP � 〉i, 1 + 〈WCP � 〉i};

3. if 〈WCP � 〉i = 0 then the whole row is null;

4. if 〈WCP � 〉i+1 6= 〈WCP � 〉i then CTi+1 = 0;

5. if 〈WCP � 〉i 6= 0 then

(a) if OLIi = 1 then 〈WCP � 〉i+1 = 1 + 〈WCP � 〉i;
(b) if OLIi = 0 then

i. if CTi 6= 15 then CTi+1 = 1 + CTi

ii. if CTi = 15 then 〈WCP � 〉i+1 = 1 + 〈WCP � 〉i

6. if OLI = 0 then CTN = 15.

9.2.2 Counter constancy constraints
We declare a column X to be counter-constant if it satisfies

CTi 6= 0 =⇒ Xi = Xi−1.

We impose that the following bit columns [[1]], [[2]], [[3]], [[4]] be counter-constant. Note that imported
columns are automatically counter-constant. Note furthermore that counter-constancy for [[1]] and [[2]]
follows from section 9.2.5.

9.2.3 Byte decompositions, bytehood and binaryness
We enforce “byte accumulation constraints” for k = 1, . . . , 6:

1. if CTi = 0 then ACC_ki = BYTE_ki;

2. if CTi 6= 0 then ACC_ki = 256 · ACC_ki−1 + BYTE_ki;

We further ask that k = 1, . . . , 6 the BYTE_k columns contain bytes. We also ask that B, B, B, B be
binary columns, i.e. Bk · (1− Bk) ≡ 0.

9.2.4 OLI constraints
We constrain the OLI column:

1. OLI is binary;

2. if 〈INST〉i = EQ then OLIi = 1

3. if 〈INST〉i = ISZERO then OLIi = 1

4. if
(
〈INST〉i 6= EQ and 〈INST〉i 6= ISZERO

)
then OLIi = 0

176

9.2.5 Target constraints
We first settle the behaviour of the first two bit columns:

1. if WCP � i 6= 0 then 
if 〈ARG1 hi〉i = 〈ARG2 hi〉i then [[1]]i = 1

if 〈ARG1 hi〉i 6= 〈ARG2 hi〉i then [[1]]i = 0

if 〈ARG1 lo〉i = 〈ARG2 lo〉i then [[2]]i = 1

if 〈ARG1 lo〉i 6= 〈ARG2 lo〉i then [[2]]i = 0

We fix the targets of the accumulator columns:

2. if CTi = 15 then

(a) the first four accumulator columns provide the byte decompositions of the arguments, i.e.
ACC_1i = 〈ARG1 hi〉i
ACC_2i = 〈ARG1 lo〉i

ACC_3i = 〈ARG2 hi〉i
ACC_4i = 〈ARG2 lo〉i

(b) the remaining two accumulator columns compute certain nonnegative adjusted differences,
i.e. {

ACC_5i = (2 · [[3]]− 1) ·
(
〈ARG1 hi〉i − 〈ARG2 hi〉i

)
− [[3]]i

ACC_6i = (2 · [[4]]− 1) ·
(
〈ARG1 lo〉i − 〈ARG2 lo〉i

)
− [[4]]i

In other words: 
[[3]]i = 1 ⇐⇒ 〈ARG1 hi〉i > 〈ARG2 hi〉i
[[3]]i = 0 ⇐⇒ 〈ARG1 hi〉i ≤ 〈ARG2 hi〉i

[[4]]i = 1 ⇐⇒ 〈ARG1 lo〉i > 〈ARG2 lo〉i
[[4]]i = 0 ⇐⇒ 〈ARG1 lo〉i ≤ 〈ARG2 lo〉i

9.2.6 Result constraints
We fix the behaviour of the result columns. The first one is always zero:

1. 〈RES hi〉i = 0: this constraints verifies the nullity of the high part of the result that finds itself
on the stack;

The behaviour of 〈RES lo〉 is instruction dependent:

2. if 〈WCP � 〉i 6= 0 then

(a) if OLIi = 1 then 〈RES lo〉i = eqi

(b) if OLIi = 0 then
i. if 〈INST〉i = SLT then 〈RES lo〉i = slti
ii. if 〈INST〉i = LT then 〈RES lo〉i = lti
iii. if 〈INST〉i = SGT then 〈RES lo〉i = 1− lti
iv. if 〈INST〉i = GT then 〈RES lo〉i = 1− slti

where we use the short-hands eqi := [[1]]i · [[2]]i, slti := [[3]]i + [[1]]i · [[4]]i and lti := eqi + slti.

177

Chapter 10

Binary

10.1 Constraint set for the Binary module.
We list Binary module specific terms and where to find their definitions: pivot-instructions 10.1.1 and
shift-instructions 10.1.1, COUNTER-cycle 10.1.2, locally-constant column 10.1.4 and stamp-
constant column 10.1.4, micro-shift COUNTER-cycle and macro-shift COUNTER-cycles of
shift-instructions.

Some constraints are repeats. We have highlighted them like so.

10.1.1 Binary Instructions
In this module we deal with the following instructions:

• AND

• OR

• XOR

• NOT

• SHL

• SHR

• SAR

• SGNX

• BYTE

(Note. We write SGNX to mean SIGNEXTEND) Most complexity comes from the pivot-instructions
(i.e. SIGNEXTEND and BYTE) and the shift-instructions (i.e. SHL, SHR, and SAR.) The term “pivot-
instruction” was chosen because the execution of both SIGNEXTEND and BYTE requires extracting a
particular byte (the PIVOT_BYTE) from the second argument of the instruction which then plays a
key role.

10.1.2 Columns
Our arithmetization uses the following columns:

1. COUNTER: goes from 31 to 0, decreasing by 1 with every row, and reseting to 31 after hitting
0; must start with 31 and end with 0; abbreviated to CT;

We call COUNTER-cycle any set of 32 consecutive rows where the first value of COUNTER is 31
(and its final value is 0). Instructions operate byte by byte, and thus take a multiples of 32 rows to
execute: AND, OR, XOR, NOT, SGNX and BYTE take 1 COUNTER-cycle to execute, SHL, SHR and SAR take
6. Columns that remain constant along COUNTER-cycles are called locally-constant.

The following are three locally-constant bit columns. They are used during the macro-shift COUNTER-
cycles of shift-instructions.

2. BIT_0: locally-constant binary column; abbreviated to [[0]]; we set [[0]]∨ = 1− [[0]];

3. BIT_1: locally-constant binary column; abbreviated to [[1]]; we set [[1]]∨ = 1− [[1]];

178

4. BIT_2: locally-constant binary column; abbreviated to [[2]]; we set [[2]]∨ = 1− [[2]];

A row index i with COUNTERi = [[0]]i = [[1]]i = [[2]]i = 0 marks the end of an instruction, and a
new instruction starts at row i + 1. This coincides with jumps in BINARY_STAMP (see below). A
non shift-instruction initializes these bits to [[2]][[1]][[0]] = 000, a shift-instruction initializes them to
[[2]][[1]][[0]] = 101 (the binary digits of 5).

5. BINARY_STAMP: locally-constant column; increases by 1 with every new binary instruction;
must start with 0; abbreviated to BS;

Columns that remain constant while BS remains constant are called stamp-constant.
The next batch of columns pertains to the (one or two) inputs and outputs (results) of an instruction

and their byte decompositions.

6. INPUT_1: locally-constant column; contains the EVM word on top of the stack when the in-
struction begins; sometimes abbreviated to I1;

7. INPUT_2: locally-constant column; when INST 6= NOT it is the second item on the stack from
the top; when INST = NOT it is zero; abbreviated to I2;

8. RES: locally-constant column; for non shift-instruction will contain the result of the instruction;
for shift-instructions it contains the result of the instruction but only during the instruction’s
final COUNTER-cycle;

9. PREFIX_1: initialized with the leading byte of INPUT_1; grows by one byte with every row until
COUNTER resets; abbreviated to P1;

10. PREFIX_2: initialized with the leading byte of INPUT_2; grows by one byte with every row until
COUNTER resets; abbreviated to P2;

11. PREFIX_RES: initialized with the leading byte of RES; grows by one byte with every row until
COUNTER resets; abbreviated to PR;

12. BYTE_1: bytes of INPUT_1 listed from most significative to least significative; abbreviated to
B1;

13. BYTE_2: same but for INPUT_2; abbreviated to B2;

14. BYTE_RES: same but for RES; abbreviated to BR.

The following are technically useful columns.

15. ZERO_BACP: BACP stands for Beyond A Certain Point; any COUNTER-cycle of this column
contain nonzero values (possibly none) followed by zeros (at least one); the amount of nonzero
values in a COUNTER-cycle depends on ZERO_BACP_PARAM;

16. ZERO_BACP_PARAM: locally-constant column; value ∈ {0, . . . , 31} that marks the first time
ZERO_BACP vanishes within the COUNTER-cycle; i.e. ZERO_BACP_PARAM+1 is the number
of zeros in a COUNTER-cycle’s worth of ZERO_BACP; sometimes abbreviated to ZP;

17. BYTE_BITS: binary column which plays a role in shift-instructions and pivot-instructions; ab-
breviated to BB;

18. PIVOT_BYTE: locally-constant column that contains a byte; used in pivot-instructions (if IN-
PUT_1 is in range): for SGNX instructions it contains the byte containing the sign bit, for BYTE
instructions it contains the byte that will be output in the end; abbreviated to PB;

179

Interpretation of BB. During the micro-shift COUNTER-cycle of a shift-instruction BB is 24 zeros
followed by the 8 bits of INPUT_1 least significant byte. This COUNTER-cycle’s worth of BB is
repeated for the 5 following macro-shift COUNTER-cycles. For pivot-instructions the 16 final bits are
the bit decompositions of the pivot PIVOT_BYTE followed by the bit decompositions of INPUT_1’s
least significant byte. For non shift-instructions and non pivot-instructions BB is 0.

Let us write b7, . . . , b1, b0 for the final 8 bits of BB in a given COUNTER-cycle. For shift-instructions
and pivot-instructions these represent the 8 bits of the least significant byte of the first argument of
the shift-instruction. The last three are combined together to form

LOW_3 = 4 · b2 + 2 · b1 + b0 ∈ {0, 1, . . . , 7}.

NOTE. There is no LOW_3 column.
The micro-shift parameter µSHP (which controls bit shifting within bytes) is deduced from it

(and the shift direction boolean SHD) as explained below. The remaining 5 bits in BYTE_BITS control
branching behaviour of the 5 COUNTER-cycles that follow, i.e. the macro-shift COUNTER-cycles i.e.
shifting by whole bytes. They are inserted in the DB column as needed.

For the pivot-instruction, the penultimate 8 bits of BB in the COUNTER-cycle are the bits of the
pivot byte PB of the instruction, i.e. the byte of the second argument which contains the sign bit. The
first one of these is thus the sign bit, and we store it in NEG (introduced below).

19. DECISION_BIT: locally-constant binary column; used in shift-instructions where it is made to
contain, in succession, the 5 leading bits of the least significant byte of INPUT_1; abbreviated
to DB;

20. NEG: stamp-constant binary column; used for SIGNEXTEND instructions where it contains the sign
bit of the pivot byte;

21. IN_RANGE_FLAG: stamp-constant binary column; for shift-instructions it equals 1 if and only
if INPUT_1 ∈ [[0, 256[[, i.e. if INPUT_1 equals its least significant byte; for pivot-instructions
instructions it equals 1 if and only if INPUT_1 ∈ [[0, 32[[; abbreviated to IRF;

If SHIFT_FLAG = 1 and IN_RANGE_FLAG = 0 (i.e. if INPUT_1 ≥ 256) then we are shifting INPUT_2,
a 256 bit integer, by at least 256 bits; for both SHL and SHR instructions this means that and the result
is 0; for SAR the result is 0 if the sign bit (i.e. the leading bit of INPUT_2) is 0 while it is 0x f f f · · · f f
(a string of 64 f’s) if the sign bit is 1.

If PIVOT_FLAG = 1 and IN_RANGE_FLAG = 0 (i.e. if INPUT_1 ≥ 32) then the BYTE instruction
returns 0 while theSGNX instruction returns INPUT_2 as is.

What follows are columns related to the micro-shift COUNTER-cycle of a shift-instruction.

22. µSHIFT_FLAG: locally-constant binary column; is zero except during the micro-shift COUNTER-
cycle of a shift-instruction when it equals 1; abbreviated to µSHF;

NOTE. µSHF is redundant: it coincides with [[2]] · [[1]]∨ · [[0]]. We keep it around for sheer convenience.

23. µSHIFT_PARAM: stamp-constant column with values in ∈ {0, 1, . . . , 7, 8}; holds the micro-
shift parameter that determines the bit shift to apply to individual bytes during the micro-
shift COUNTER-cycle of a shift-instruction; equals LOW_3 ∈ {0, 1, . . . , 7} if SHD = 1; equals
8− LOW_3 ∈ {1, . . . , 7, 8} if SHD = 0; abbreviated to µSHP;

24. ♦SPLIT_AND_SHIFTED_PREFIX: deduced from INPUT_2 and µSHP using a look up table;
abbreviated to ♦SNS_PREFIX;

25. ♦SPLIT_AND_SHIFTED_SUFFIX: deduced from INPUT_2 and µSHP using a look up table;
abbreviated to ♦SNS_SUFFIX;

180

26. ♦ONES: deduced from INPUT_2 and µSHP using a look up table; it is used for SAR instructions;
contains an integer from the set

{00000000, 10000000, 11000000, 11100000, 11110000, 11111000, 11111100, 11111110}

used to pad the first right shifted byte in case its leading bit is 1.

What follows are the instruction column and instruction decoded flag columns.

27. INST: stamp-constant column; contains instruction opcodes.

28. AND_FLAG: binary column deduced from INST by lookup table; lights up for AND instructions;
abbreviated to ANDF;

29. OR_FLAG: binary column deduced from INST by lookup table; lights up for OR instructions;
abbreviated to ORF;

30. XOR_FLAG: binary column deduced from INST by lookup table; lights up for XOR instructions;
abbreviated to XORF;

31. NOT_FLAG: binary column deduced from INST by lookup table; lights up for NOT instructions;
abbreviated to NOTF;

32. SHIFT_FLAG: binary column deduced from INST by lookup table; lights up shift-instructions,
i.e. for SHL, SHR and SAR; abbreviated to SHF;

33. SHIFT_DIRECTION: binary column deduced from INST by lookup table; equals 1 for all instruc-
tions except for SHL when it equals 0; abbreviated to SHD;

34. SAR_FLAG: binary column deduced from INST by lookup table; lights up for SAR instructions;
abbreviated to SARF;

35. PIVOT_FLAG: binary column deduced from INST by lookup table; lights up pivot-instructions,
i.e. BYTE and SGNX; abbreviated to PF;

36. SIGNEXTEND_FLAG: binary column deduced from INST by lookup table; lights up for the SGNX
instruction; abbreviated to SGNXF.

What follows are plookup obtained columns that contain the results of bit operations on pairs of bytes.

37. AND: contains the bit-wise AND of BYTE_1 and BYTE_2;

38. OR: contains the bit-wise OR of BYTE_1 and BYTE_2;

39. XOR: contains the bit-wise XOR of BYTE_1 and BYTE_2;

40. NOT: contains the bit-wise NOT of BYTE_1.

10.1.3 Lookup tables and Plookup constraints
Binary instruction decoder

The following columns are obtained by instruction decoding the INST column using the binary instruc-
tion decoder 10.1.

1. AND_FLAG

2. OR_FLAG

3. XOR_FLAG

4. NOT_FLAG,

5. SHIFT_FLAG

6. SHIFT_DIRECTION

181

Inst ANDF ORF XORF NOTF SHF SHD SARF PF SGNXF
AND 1 0 0 0 0 1 0 0 0
OR 0 1 0 0 0 1 0 0 0
XOR 0 0 1 0 0 1 0 0 0
NOT 0 0 0 1 0 1 0 0 0
SHR 0 0 0 0 1 1 0 0 0
SAR 0 0 0 0 1 1 1 0 0
SHL 0 0 0 0 1 0 0 0 0
SGNX 0 0 0 0 0 1 0 1 1
BYTE 0 0 0 0 0 1 0 1 0

Figure 10.1: Binary instruction decoder.

7. SAR_FLAG, 8. PIVOT_FLAG 9. SIGNEXTEND_FLAG.

NOTE. These are (technically) stamp-constant binary columns, but since they are obtained by in-
struction decoding there is no need to enforce either of these constraints.

AND, OR, XOR and NOT lookup table

The values in the AND, OR, XOR and NOT columns are deduced from the bytes in the BYTE_1 and
BYTE_2 columns by means of a lookup table of the form

BYTE_1 BYTE_2 AND OR XOR NOT
b b′ b ∧ b′ b ∨ b′ b⊕ b′ ¬ b

where the first two arguments run through all pairs of bytes (b, b′).

Split and shifted prefix and suffix and ones

The ♦SPLIT_AND_SHIFTED_PREFIXi and ♦SPLIT_AND_SHIFTED_SUFFIXi columns contain the
result of splitting the binary representation of the byte BYTE_2i in two and shifting the resulting
bits ”to the opposite side”. The ♦ONES column contains a byte that is a (left aligned) sequence
of one’s (possibly none) followed by zero’s (at least one). The associated lookup table depends on
two parameters: a byte B = a b c d e f g h (taken from the BYTE_2 column) in big endian binary
representation, and a micro-shift parameter µSHP ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}.

The ♦SNS_PREFIX, ♦SNS_SUFFIX and ♦ONES columns are obtained by lookup using BYTE_2
and µSHP according to the lookup table 10.2.

10.1.4 Technical constraints
Trivial constraints

The following constraints apply when SHFi = 0 and PFi = 0.

1. ZPi = 31,

2. BBi = 0,

3. NEGi = 0,

4. IRFi = 0,

182

left shift
LOW_3 ♦SNS_SUFFIX ♦SNS_PREFIX

0 0 0 0 0 0 0 0 0 a b c d e f g h
1 0 0 0 0 0 0 0 a b c d e f g h 0
2 0 0 0 0 0 0 a b c d e f g h 0 0
3 0 0 0 0 0 a b c d e f g h 0 0 0
4 0 0 0 0 a b c d e f g h 0 0 0 0
5 0 0 0 a b c d e f g h 0 0 0 0 0
6 0 0 a b c d e f g h 0 0 0 0 0 0
7 0 a b c d e f g h 0 0 0 0 0 0 0

right shift
LOW_3 ♦SNS_SUFFIX ♦SNS_PREFIX

0 a b c d e f g h 0 0 0 0 0 0 0 0
1 0 a b c d e f g h 0 0 0 0 0 0 0
2 0 0 a b c d e f g h 0 0 0 0 0 0
3 0 0 0 a b c d e f g h 0 0 0 0 0
4 0 0 0 0 a b c d e f g h 0 0 0 0
5 0 0 0 0 0 a b c d e f g h 0 0 0
6 0 0 0 0 0 0 a b c d e f g h 0 0
7 0 0 0 0 0 0 0 a b c d e f g h 0

µSHP ♦SNS_SUFFIX ♦SNS_PREFIX ♦ONES LB
0 a b c d e f g h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a
1 0 a b c d e f g h 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 a
2 0 0 a b c d e f g h 0 0 0 0 0 0 1 1 0 0 0 0 0 0 a
3 0 0 0 a b c d e f g h 0 0 0 0 0 1 1 1 0 0 0 0 0 a
4 0 0 0 0 a b c d e f g h 0 0 0 0 1 1 1 1 0 0 0 0 a
5 0 0 0 0 0 a b c d e f g h 0 0 0 1 1 1 1 1 0 0 0 a
6 0 0 0 0 0 0 a b c d e f g h 0 0 1 1 1 1 1 1 0 0 a
7 0 0 0 0 0 0 0 a b c d e f g h 0 1 1 1 1 1 1 1 0 a
8 0 0 0 0 0 0 0 0 a b c d e f g h unspecified a

Figure 10.2: The first two tables represent the expected ♦SNS_SUFFIX and ♦SNS_PREFIX values
according to LOW_3 and shift direction. The bottom table combines the two and outputs the expected
split and shifted prefixes and suffixes in terms of µSHP. It also contains the associated ♦ONES column.

5. also constrain the BYTE_RES column:

BYTE_RESi = ANDi · AND_FLAGi

+ ORi · OR_FLAGi

+ NOTi · NOT_FLAGi

+ XORi · XOR_FLAGi

NOTE. The first condition and the constraints for ZB (section 10.1.4) ensures that ZBi = 0, too.
Specifying BYTE_RES in the case SHFi = 1 or PFi = 1 is more complex; we deal with in the

section 10.1.5 and section 10.1.6 respectively.

1. if SHFi = 0 then

(a) DBi = 0,
(b) µSHFi = 0,
(c) µSHPi = 0.

2. if PFi = 0 then PBi = 0.

Binaryness constraints

Recall that a column X is binary if it satisfies the constraint

Xi · (1−Xi) = 0

183

The following columns are binary: [[2]], [[1]], [[0]], NEG, BB, DB, µSHF, IRF. We thus have the following
constraints:

1. [[2]]i · (1− [[2]]i) = 0

2. [[1]]i · (1− [[1]]i) = 0

3. [[0]]i · (1− [[0]]i) = 0

4. NEGi · (1− NEGi) = 0

5. BBi · (1− BBi) = 0

6. DBi · (1− DBi) = 0

7. µSHFi · (1− µSHFi) = 0

8. IRFi · (1− IRFi) = 0

COUNTER constraints

COUNTER is supposed to loop continuously from 31 down to 0.

1. COUNTER0 = 31, i.e. we initialize COUNTER at 31,

2. if COUNTERi−1 6= 0 then COUNTERi = COUNTERi−1 − 1

3. if COUNTERi−1 = 0 then COUNTERi = 31

4. COUNTERN−1 = 0, i.e. COUNTER must end with 0,

Locally-constant columns

We say that a column X is locally-constant if it satisfies the following constraint:

if COUNTERi−1 6= 0 then Xi = Xi−1

The following columns are locally-constant: µSHIFT_FLAG, [[0]], [[1]], [[2]], BINARY_STAMP, ZERO_BACP_PARAM,
µSHIFT_PARAM, PIVOT_BYTE, INPUT_1, INPUT_2, RES. Hence we have the following constraints:

1. if COUNTERi−1 6= 0 then

(a) [[0]]i = [[0]]i−1

(b) [[1]]i = [[1]]i−1

(c) [[2]]i = [[2]]i−1

(d) BSi = BSi−1

(e) INPUT_1i = INPUT_1i−1

(f) INPUT_2i = INPUT_2i−1

(g) RESi = RESi−1

(h) PBi = PBi−1

(i) DBi = DBi−1

(j) µSHFi = µSHFi−1

(k) ZPi = ZPi−1

we could have replace the condition COUNTERi−1 6= 0 with COUNTERi 6= 31.

184

Range proofs

We require a range proof that the columns BYTE_1, BYTE_2, BYTE_RES, PIVOT_BYTE only con-
tains bytes, i.e. values in the range [[0, 256[[. This constraint is applied to the interleaved column
BYTE_1� BYTE_2� BYTE_RES� PIVOT_BYTE.
NOTE. We threw PIVOT_BYTE into the mix because we don’t constrain it universally (i.e. we
only care about it for pivot-instructions) and so that the resulting vector has length 128 for non
shift-instructions 6*128 for shift-instructions. In any case, with 2 non shift-instructions or 1 shift
instructions this column has length ≥ 256 and so can be used in a Cairo-style range proof.

BYTE / PREFIX / INPUT constraints

For (B,P, I) any of the following columns triples

1. (BYTE_1,PREFIX_1, INPUT_1),

2. (BYTE_2,PREFIX_2, INPUT_2),

3. (BYTE_RES,PREFIX_RES,RES)

We implemnent the following constraints:

1. I is locally-constant,

2. if COUNTERi = 31, then Pi = Bi

3. if COUNTERi 6= 31, then Pi = 256 · Pi−1 + Bi

4. if COUNTERi = 0, then Pi = Ii

[[0]], [[1]], and [[2]] constraints

Recall the abbreviations [[0]] = BIT_0, [[1]] = BIT_1, [[2]] = BIT_2. We think of [[2]]i[[1]]i[[0]]i as being the
(big endian) base 2 digits of a locally-constant counter that is initialized at 0 for non shift-instructions
and at 5 for shift-instructions. This counter, while > 0, decreases by one at the end of every COUNTER-
cycle. The COUNTER-cycle where it is 0 marks the final COUNTER-cycle of the current instruction. In
other words, non shift-instructions span 1 COUNTER-cycle while shift-instructions span 6 COUNTER-
cycles. In case of a shift-instruction the interpretation is as follows: the first COUNTER-cycle performs
micro-shifting (i.e. bit shift within bytes), the next 5 COUNTER-cycle perform for macro-shifts (i.e.
potentially moving the bytes by 1, 2, 4, 8 or 16 indices).

1. [[0]], [[1]] and [[2]] are locally-constant;

2. [[0]], [[1]] and [[2]] are binary;

NOTE. it seems reasonable that we may omit the “binaryness” conditions given what follows;

3. initialization of the bits:

(a) [[0]]0 = SHIFT_FLAG0

(b) [[1]]0 = 0

(c) [[2]]0 = SHIFT_FLAG0

4. if COUNTERi−1 = 0 and ([[0]]i−1 = 0 and [[1]]i−1 = 0 and [[2]]i−1 = 0) then

(a) [[0]]i = SHIFT_FLAGi

(b) [[1]]i = 0

185

(c) [[2]]i = SHIFT_FLAGi

In other words, at the onset of a non shift-instructions [[2]]i[[1]]i[[0]]i = 000 (i.e. 0 in binary) while
at the onset of a shift-instruction, [[2]]i[[1]]i[[0]]i = 101 (i.e. 5 in binary).

5. if COUNTERi−1 = 0 and ([[0]]i−1 = 1 or [[1]]i−1 = 1 or [[2]]i−1 = 1) then

(a) [[0]]i = 1− [[0]]i−1, i.e. the zero-th bit flips after every COUNTER-cycle of a shift-instruction,
(b) [[1]]i = [[1]]i−1 · [[0]]i−1 + (1− [[1]]i−1) · (1− [[0]]i−1), i.e. the first bit flips whenever the zero-th

bit is zero, {
if [[0]]i−1 = 0 then [[1]]i = 1− [[1]]i−1

if [[0]]i−1 = 1 then [[1]]i = [[1]]i−1

(c) [[2]]i = [[2]]i−1 · ([[1]]i−1 + [[0]]i−1− [[1]]i−1 · [[0]]i−1)+ (1− [[2]]i−1) · (1− [[1]]i−1) · (1− [[0]]i−1), i.e.
the second bit flips whenever both the first and zero-th bit are both zero:if

(
[[0]]i−1 = 0 and [[1]]i−1 = 0

)
then [[2]]i = 1− [[2]]i−1

if
(
[[0]]i−1 = 1 or [[1]]i−1 = 1

)
then [[2]]i = [[2]]i−1

In other words, after every COUNTER-cycle within a given shift-instruction the base 2 integer
[[2]][[1]][[0]] decreases by 1;

6. finalization of the bits:

(a) [[0]]N−1 = 0

(b) [[1]]N−1 = 0

(c) [[2]]N−1 = 0

BINARY_STAMP constraints

1. BS is locally-constant;

2. BS0 = 0, i.e. BS is initialized at 0;

3. if COUNTERi−1 = 0 then

BSi = BSi−1 + (1− [[0]]i−1) · (1− [[1]]i−1) · (1− [[2]]i−1)

In other words, if COUNTERi−1 = 0 and [[2]]i−1[[1]]i−1[[0]]i−1 = 000 then BSi = BSi−1 + 1, while if
COUNTERi−1 = 0 and [[2]]i−1[[1]]i−1[[0]]i−1 6= 000 then BSi = BSi−1

Stamp-constant columns

Let X be a column. We say that X is stamp-constant if it satisfies the following constraint:

if BINARY_STAMPi = BINARY_STAMPi−1 then Xi = Xi−1

The following columns are stamp-constant: INST, NEG, µSHP, IN_RANGE_FLAG. Hence we have the
following constraints:

1. if BINARY_STAMPi = BINARY_STAMPi−1 then

(a) INSTi = INSTi−1

(b) NEGi = NEGi−1

186

(c) µSHPi = µSHPi−1

(d) IRFi = IRFi−1

Since BINARY_STAMP is locally-constant it follows that stamp-constant columns are locally-constant,
too. Note that all columns that are deduced from INST by means of a lookup table (that is AND_FLAG,
OR_FLAG, XOR_FLAG, NOT_FLAG, SHIFT_FLAG, SHIFT_DIRECTION, SAR_FLAG, PIVOT_FLAG,
SIGNEXTEND_FLAG) are thus automatically stamp-constant (but we don’t need to include the asso-
ciated constraint).

µSHIFT_FLAG constraints

We have

1. µSHF is locally-constant;

2. µSHF is a binary column;

3. we initialize it µSHF0 = SHIFT_FLAG0;

4. if COUNTERi−1 = 0:

(a) if BSi 6= BSi−1 then µSHFi = SHIFT_FLAGi,
(b) if BSi = BSi−1 then µSHFi = 0.

In other words, µSHFi = 0 for non shift-instructions, while for shift-instructions µSHFi = 1 during the
micro-shift COUNTER-cycle and µSHFi = 0 during the macro-shift COUNTER-cycles.

ZERO_BACP_PARAM constraints

We begin with the trivial case of ZP, i.e. that of a non shift-instruction and non pivot-instruction.

1. ZP is locally-constant;

2. if SHFi = 0 and PFi = 0 then ZPi = 31 ;

We now deal with constraining ZP for shift-instructions and then pivot-instructions.

ZP constraints for shift-instructions. During the micro-shift COUNTER-cycle of a shift-instruction
ZPi = 7. In the first macro-shift COUNTER-cycle we set ZP either to 0 or 30 depending on the
SHIFT_DIRECTION. From then on out (ZP − cst) follows a geometric progression with ratio 2 for
the remaining COUNTER-cycles of the shift-instruction (for some constant cst which depends on
SHIFT_DIRECTION).

1. if SHFi = 1 then

(a) if µSHFi = 1 then ZPi = 7;
(b) if BSi = BSi−1 and COUNTERi = 31 then

i. if µSHFi−1 = 1 then
ZPi = 30 · SHDi

In other words during the first macro-shift COUNTER-cycle of a shift-instruction{
if SHDi = 0 : ZPi = 0

if SHDi = 1 : ZPi = 30

187

BS SHF SHD µSHF [[2]] [[1]] [[0]] ZP
...

...
...

...
...

...
...

...
x− 1 ? ? 0 0 0 0 ?
x 1 0 1 1 0 1 7
x 1 0 0 1 0 0 0
x 1 0 0 0 1 1 1
x 1 0 0 0 1 0 3
x 1 0 0 0 0 1 7
x 1 0 0 0 0 0 15

x+ 1 ? ? µ µ 0 µ 1
...

...
...

...
...

...
...

...

BS SHF SHD µSHF [[2]] [[1]] [[0]] ZP
...

...
...

...
...

...
...

...
x− 1 ? ? 0 0 0 0 ?
x 1 1 1 1 0 1 7
x 1 1 0 1 0 0 30
x 1 1 0 0 1 1 29
x 1 1 0 0 1 0 27
x 1 1 0 0 0 1 23
x 1 1 0 0 0 0 15

x+ 1 ? ? µ µ 0 µ 1
...

...
...

...
...

...
...

...

Figure 10.3: The left hand side represents the 6 COUNTER-cycles of a shift-instruction with
SHIFT_DIRECTION = 0. The right hand side represents the 6 COUNTER-cycles of a shift-instruction
with SHIFT_DIRECTION = 1. Every row represents a full COUNTER-cycle, i.e. 32 rows of the actual
execution trace.

BS SHF µSHF SGNXF [[2]] [[1]] [[0]] ZP
...

...
...

...
...

...
...

...
x− 1 ? 0 ? 0 0 0 ?
x 0 0 0 0 0 0 30

x+ 1 ? µ ? µ 0 µ ?
...

...
...

...
...

...
...

...

BS SHF µSHF SGNXF [[2]] [[1]] [[0]] ZP
...

...
...

...
...

...
...

...
x− 1 ? 0 ? 0 0 0 ?
x 0 0 1 0 0 0 ?

x+ 1 ? µ ? µ 0 µ ?
...

...
...

...
...

...
...

...

Figure 10.4: The table on the left represents the 1 COUNTER-cycle of an instruction that is neither a
shift-instruction nor a SIGNEXTEND instruction. The table on the right represents the 1 COUNTER-cycle
of a SIGNEXTEND instruction.

ii. if µSHFi−1 = 0 then

ZPi − 1 + 32 · SHDi = 2 · (ZPi−1 − 1 + 32 · SHDi−1)

(NOTE. SHDi = SHDi−1 since SHD is stamp-constant.) In other words{
if SHIFT_DIRECTIONi = 0 : ZPi + 1 = 2 · (ZPi−1 + 1)

if SHIFT_DIRECTIONi = 1 : 31− ZPi = 2 · (31− ZPi−1)

In other words along shift-instructions the values of ZP evolve as follows While for non shift-
instructions it evolves as follows:

ZP constraints for pivot-instructions. We deal with this case in section 10.1.6.

188

0
8←−−−−−→ 0?

24←−−−−−−−−−−−−→ ? 0
8←−−−−−→ 0?

24←−−−−−−−−−−−−→ ?

?
31←−−−−−−−−−−−−−−−−−−−−−−−→ ? 0

?
30←−−−−−−−−−−−−−−−−−−−→ ? 0 0

?
28←−−−−−−−−−−−−−−−→ ? 0 ←−−→ 0

?
24←−−−−−−−−−−−−→ ? 0 ←−−−−−→ 0

?
16←−−−−−−−−→ ? 0 ←−−−−−−−−→ 0

0
31←−−−−−−−−−−−−−−−−−−−−−−−→ 0?

0
30←−−−−−−−−−−−−−−−−−−−→ 0? ?

0
28←−−−−−−−−−−−−−−−→ 0? ←−−→ ?

0
24←−−−−−−−−−−−−→ 0? ←−−−−−→ ?

0
16←−−−−−−−−→ 0? ←−−−−−−−−→ ?

Figure 10.5: Pattern of nonzero values vs zeros in the ZERO_BACP column. Both the left hand side
and right hand side represent the ZERO_BACP column (as rows rather than columns) during the 6
COUNTER-cycles of a shift-instruction. The first row is the micro-shift COUNTER-cycle: in both cases
there are 24 nonzero values followed by 8 zeros. The following rows (columns) on the left hand side
represent the pattern for SHL full byte shifting. The green values are nonzero and are those indices
that will be made to contain bytes. The columns on the right hand side represent the pattern for SHR
full byte shifting. The yellow values are zero and are at those indices that will be made to contain
bytes.

ZERO_BACP constraints

A COUNTER-cycle’s worth of ZERO_BACP values contains a string of nonzero values (possibly none)
followed by zeros (at least one), i.e. it looks like so (with ? indicating nonzero values)

COUNTER · · · 31 30 · · · p + 1 p p− 1 · · · 1 0 31
ZERO_BACP_PARAM · · · p p · · · p p p · · · p p · · ·

ZERO_BACP · · · ? ? · · · ? 0 0 · · · 0 0 · · ·

1. if COUNTERi = 31, then ZBi = CTi − ZPi

2. if COUNTERi 6= 31, then ZBi = ZBi−1 · (CTi − ZPi)

BYTE_BITS constraints

We ask that BB satisfy the following constraints:

1. BB is a binary column;

2. if SHFi = 0 and PFi = 0 then BBi = 0;

3. if SHFi = 1:

(a) if µSHFi = 1 and ZBi 6= 0 then BBi = 0;
(b) if µSHFi = 1 and COUNTERi = 0 then

BYTE_1i =
7∑

k=0

2k · BBi−k

189

Recall that during the micro-shift phase of a shift-instruction ZP = 7. The above two constraints
thus mean the following: the values in BB during the micro-shift COUNTER-cycle of a shift-
instruction are comprised of the 24 zeros followed by 8 bits that are the bit decomposition of the
least significant byt of INPUT_1.

(c) if µSHFi = 0 then BBi = BBi−32;

i.e. one transfers bits from the previous COUNTER-cycle of BB to the next COUNTER-cycle.

4. if PFi = 1:

(a) if COUNTERi = 0 then 
BYTE_1i =

7∑
k=0

2k · BBi−k

PBi =

7∑
k=0

2k · BBi−8−k ∈ [[0, 256[[

The above two constraints thus mean the following: the final 8 bits in BB are the bit decom-
position of the least significant byt of INPUT_1, and the 8 bits preceding them are the bit
decomposition of the pivot byte. We reproduce these constraints later in context 10.1.6.

DECISION_BIT constraints

DB is a locally-constant binary column. For non shift-instruction, DB is zero. During the micro-shift
COUNTER-cycle of a shift-instruction DB is zero. During the macro-shift COUNTER-cycles of a shift-
instruction DB will contain in sequence the 5 most significant bits of the byte that is recorded in the
last 8 bits of BB.

1. DB is locally-constant;

2. DB is a binary column;

3. if SHFi = 0 then DBi = 0;

4. if SHFi = 1 then :

(a) if µSHFi = 1 then DBi = 0;
(b) if µSHFi = 0 and COUNTERi = 0 then

DBi = [[2]]i · [[1]]∨i · [[0]]∨i · BBi−3

+ [[2]]∨i · [[1]]i · [[0]]i · BBi−4

+ [[2]]∨i · [[1]]i · [[1]]∨i · BBi−5

+ [[2]]∨i · [[1]]∨i · [[0]]i · BBi−6

+ [[2]]∨i · [[1]]∨i · [[0]]∨i · BBi−7

(Recall the convention [[k]]∨ = 1− [[k]], for k = 0, 1, 2.)

I.e. in the first macro-shift CT-cycle, DB contains LSB3, in the second one, LSB4, in the third one,
LSB5, in the fourth one, LSB6 and in the fifth one, LSB7. Here the LSBi, i = 0, . . . , 7, are the big
endian base 2 digits of the least significant byte LSB of the first argument of the shift-instruction
(INPUT_1.)

190

BB DB
0
...
0

LSB7

...
LSB0

0

...

0

0
...
0

LSB7

...
LSB0

LSB3

...

LSB3

0
...
0

LSB7

...
LSB0

LSB4

...

LSB4

0
...
0

LSB7

...
LSB0

LSB5

...

LSB5

0
...
0

LSB7

...
LSB0

LSB6

...

LSB6

0
...
0

LSB7

...
LSB0

LSB7

...

LSB7

Figure 10.6: The above represents the 6 COUNTER-cycles of a shift-instruction. The first COUNTER-
cycle is the micro-shift cycle. The values in the BB column during the first COUNTER-cycle are
reproduced in the BB column of the 5 macro-shift COUNTER-cycles of the instruction. Green boxes
represent zeros. Monochrome boxes represent locally-constant columns.

191

IN_RANGE_FLAG constraints

The IN_RANGE_FLAG column tests whether INPUT_1 is in range. This is only relevant for pivot-
instructions andshift-instructions. Depending on the instruction this means different things.

1. IRF is a binary flag;

2. IRF is stamp-constant;

3. if SHFi = 0 and PFi = 0 then IRFi = 0;

For shift-instructions “INPUT_1 in range” means INPUT_1 ∈ [[0, 256[[:

4. if SHFi = 1 and µSHFi = 1 and COUNTERi = 0 then{
if INPUT_1i = BYTE_1i : IN_RANGE_FLAGi = 1

if INPUT_1i 6= BYTE_1i : IN_RANGE_FLAGi = 0

i.e. during the final step of the micro-shift COUNTER-cycle of a shift-instruction we compare
INPUT_1 with its least significant byte and if they agree (i.e. if INPUT_1 is a byte) then
IN_RANGE_FLAG is set to 1, otherwise to 0;
NOTE. we can drop the condition ”SHFi = 1” since ”µSHFi = 1” can only occur during (the
micro shift phase of) a shift-instruction;

For pivot-instructions “INPUT_1 in range” means INPUT_1 ∈ [[0, 32[[:

5. if PFi = 1 and COUNTERi = 0 then{
if INPUT_1i =

∑4
k=0 2

k · BBi−k : IRFi = 1

if INPUT_1i 6=
∑4

k=0 2
k · BBi−k : IRFi = 0[[

Indeed, for pivot-instructions the final 8 bits of the BB column contain the bits of the least significant
byte of INPUT_1.

µSHIFT_PARAM constraints.

µSHP contains the micro-shift parameter which is used for byte slicing. As such, its value only matters
for shift-instructions. Furthermore its value depends on whether it’s a right shift (i.e. SHR and SAR)
or a left shift (i.e. SHL). By construction it is a number in the range {0, 1, . . . , 8}.

1. µSHP is stamp-constant;

2. if SHFi = 0 then µSHPi = 0;

3. if SHFi = 1 and µSHFi = 1 and COUNTERi = 0 then{
if SHDi = 1 : µSHPi =

∑2
k=0 2

k · BBi−k

if SHDi = 0 : µSHPi = 8−
∑2

k=0 2
k · BBi−k

i.e. we set SHD at the last row of the micro-shift COUNTER-cycle of a shift-instruction.

192

10.1.5 Shift-instruction constraints
The micro-shift COUNTER-cycle (i.e. first COUNTER-cycle of a shift-instruction i.e. the COUNTER-
cycle where µSHF = 1) uses the plookup justified shifted prefixes and suffixes (as well as the ♦ONES
column in case of a SAR instruction) to compute the bytes of the micro-shifted word INPUT_2. The
results are stored in the BYTE_RES column.

The following 5 COUNTER-cycles of a shift-instruction (i.e. its macro-shift COUNTER-cycles) do
three things:

1. they copy the previous COUNTER-cycle’s BYTE_RES column into the current COUNTER-cycle’s
BYTE_1 column

2. they insert the right/left shifted version of the previous COUNTER-cycle’s BYTE_RES column
into the current COUNTER-cycle’s BYTE_2 column

3. depending on the current COUNTER-cycle’s DECISION_BIT column they copy (the current
COUNTER-cycle’s) BYTE_1 or BYTE_2 into (the current COUNTER-cycle’s) BYTE_RES.

Micro-shift constraints

The following constraints apply when SHFi = 1 and µSHFi = 1.

1. if SHDi = 1 (i.e. micro shift phase of a SHR or SAR instruction) then

(a) if COUNTERi = 31:
i. Pad the leading BYTE_RES with the appropriate number of ones during the micro-shift

phase of a SAR instruction:

BYTE_RESi = ♦SPLIT_AND_SHIFTED_SUFFIXi

+SAR_FLAGi · ♦ONESi· · LBi

ii. Set NEGi: NEGi=SAR_FLAGi · LBi i.e. NEGi = 0 unless we are doing a SAR instruction
and the leading bit of INPUT_2 is 1, in which case NEGi = 1

(b) elseif COUNTERi 6= 31:

BYTE_RESi =
♦SPLIT_AND_SHIFTED_SUFFIXi +

♦SPLIT_AND_SHIFTED_PREFIXi−1

2. if SHDi = 0 (i.e. micro shift phase of a SHL instruction) then

(a) if COUNTERi 6= 0:

BYTE_RESi =
♦SPLIT_AND_SHIFTED_PREFIXi +

♦SPLIT_AND_SHIFTED_SUFFIXi+1

(b) elseif COUNTERi = 0:

BYTE_RESi =
♦SPLIT_AND_SHIFTED_PREFIXi

Macro-shift constraints

The following constraints apply when SHFi = 1 and µSHFi = 0.

1. if IN_RANGE_FLAGi = 0: 
BYTE_1i = 0

BYTE_2i = 0

BYTE_RESi = 255 · NEGi

193

NOTE. Recall that for shift-instructions NEG can only be nonzero for a SAR instruction.
In other words, if the instruction requires us to shift by ≥ 256 bits, the result of the shift-
instruction will be zero in all cases except when executing a SAR instruction on a negative second
argument, in which case the expected result is −1, i.e. 0xf f · · · f a string of 64 f’s. The second
argument is negative iff the leading bit of the second input of the instruction is 1 (i.e. INPUT_2
from the micro-shift COUNTER-cycle represents a negative integer), i.e. if NEGi = 1.

2. if IN_RANGE_FLAGi = 1

(a) BYTE_1i is deduced simply:

BYTE_1i = BYTE_RESi−32

In other words, after the first COUNTER-cycle of a shift (i.e. the micro-shift) the following
COUNTER-cycles of that shift-instruction copy BYTE_RES from the previous COUNTER-
cycle into the current COUNTER-cycle’s BYTE_1 column.

(b) BYTE_2i is more involved:
i. if SHIFT_DIRECTION = 0

A. if ZERO_BACPi 6= 0:

BYTE_2i = [[2]]i · [[1]]∨i · [[0]]∨i · BYTE_RESi−32+1

+ [[2]]∨i · [[1]]i · [[0]]i · BYTE_RESi−32+2

+ [[2]]∨i · [[1]]i · [[1]]∨i · BYTE_RESi−32+4

+ [[2]]∨i · [[1]]∨i · [[0]]i · BYTE_RESi−32+8

+ [[2]]∨i · [[1]]∨i · [[0]]∨i · BYTE_RESi−32+16

B. if ZERO_BACPi = 0:
BYTE_2i = 0

ii. if SHIFT_DIRECTIONi = 1

A. if ZERO_BACPi 6= 0:
BYTE_2i = 255 · NEGi

Note that NEGi 6= 0 during a shift-instruction can only happen for SAR instructions.
B. if if ZERO_BACPi = 0:

BYTE_2i = [[2]]i · [[1]]∨i · [[0]]∨i · BYTE_RESi−32−1

+ [[2]]∨i · [[1]]i · [[0]]i · BYTE_RESi−32−2

+ [[2]]∨i · [[1]]i · [[1]]∨i · BYTE_RESi−32−4

+ [[2]]∨i · [[1]]∨i · [[0]]i · BYTE_RESi−32−8

+ [[2]]∨i · [[1]]∨i · [[0]]∨i · BYTE_RESi−32−16

(c) BYTE_RESi is deduced simply from BYTE_2i, BYTE_1i and DECISION_BITi:

BYTE_RESi = DBi · BYTE_2i + (1− DBi) · BYTE_1i

in other words, {
if DBi = 1 : BYTE_RESi = BYTE_2i
if DBi = 0 : BYTE_RESi = BYTE_1i

194

10.1.6 Pivot-instruction constraints
The following constraints apply when PIVOT_FLAGi = 1.

We start by verifying bits from the BYTE_BITS column.

1. if COUNTERi = 0 then :

(a) B1i =
∑7

k=0 2
k · BBi−k ∈ [[0, 256[[

(b) PBi =
∑7

k=0 2
k · BBi−8−k ∈ [[0, 256[[

(c) we specify NEGi: {
if SGNXF = 1 : NEGi = BBi−15 ∈ {0, 1}
if SGNXF = 0 : NEGi = 0

The first condition verifies the final 8 bits of BB in the COUNTER-cycle as being those of the least
significant byte of INPUT_1 — this matters both for pivot-instructions. The second condition
verifies the preceding 8 bits as being those of PIVOT_BYTE and the third condition verifies the
sign bit NEG — these two conditions only matter for SGNX.
NOTE. The first two constraints were already mentioned in section 10.1.4.

(d) we specify ZPi: {
if SGNXFi = 1 : ZPi =

∑4
k=0 2

k · BBi−k ∈ [[0, 32[[

if SGNXFi = 0 : ZPi = 31−
∑4

k=0 2
k · BBi−k ∈ [[0, 32[[

The value of ZP depends on whether we the instruction is SGNX or BYTE. The reason for this
discrepancy is that the position of the pivot byte for a SGNX instruction (i.e. the byte containing
the sign bit) is defined by its offset from INPUT_2’s least significant byte, while the position of
the pivot byte for a BYTE instruction (i.e. the byte that the instruction selects and returns) is
defined by its offset from INPUT_2’s most significant byte.

NOTE. Recall that NEG, PB, ZP are locally-constant columns so the preceding constraints completely
fix these columns for the full COUNTER-cycle of BYTE and SGNX instructions.

We now move on to obtaining the PB from the byte decomposition of I2.

2. if ZERO_BACPi = 0 and ZERO_BACPi−1 6= 0 and COUNTERi 6= 31 then PIVOT_BYTEi =
BYTE_2i

3. if ZERO_BACPi = 0 and COUNTERi = 31 then PIVOT_BYTEi = BYTE_2i
In most cases we recognize the pivot byte as the byte from the BYTE_2 column in the first row where
ZB switches from a nonzero value to 0. If ZP = 31 there is no such switch, and so the above constraint
corrects for that.

We now constrain BYTE_RES

4. if SGNXFi = 1, i.e. for a SIGNEXTEND instruction, there are two cases to distinguish. If INPUT_1
isn’t in range then the result is just INPUT_2 itself. If, on the other hand, INPUT_1 is in range
the result may need to be padded with 0x00’s or 0xff’s according to the sign bit NEG:

(a) if IRFi = 0
BYTE_RESi = BYTE_2i

(b) if IRFi = 1 {
if ZBi 6= 0 then BYTE_RESi = 255 · NEGi

if ZBi = 0 then BYTE_RESi = BYTE_2i

195

in other words, we discard all bytes from ZERO_BACP preceding the pivot byte and replace
them with zeros if the sign bit of the pivot byte is 0 or with ones if the sign bit of the pivot byte
is 1, and keep all bytes from ZERO_BACP following (and including) the pivot byte.

5. if SGNXFi = 0, i.e. for a BYTE instruction:{
if ZBi 6= 0 then BYTE_RESi = 0

if ZBi = 0 then BYTE_RESi = PBi · IRFi

in other words, the first 31 bytes of the result are always zero, and the final byte is the pivot
byte if INPUT_1 is in range, otherwise it’s 0.

196

COUNTER

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

SGNXF

Loc.Cst.
Binary

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

ZB

?

?

?

?

?

?

?

?

?

?

?

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

BYTE_2

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

PB

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

PB

Loc.Cst.

PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB

BB

Binary

0 / 1

0 / 1

0 / 1

0 / 1

0 / 1

0 / 1

0 / 1

0 / 1

0 / 1

0 / 1

0 / 1

0 / 1

0 / 1

0 / 1

0 / 1

0 / 1

LSB0

LSB1

LSB2

LSB3

LSB4

LSB5

LSB6

LSB7

PB0

PB1

PB2

PB3

PB4

PB5

PB6

PB7

NEG

Loc.Cst.
Binary

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

PB7

ZP

Loc.Cst.

ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP
ZP

BYTE_1

LSB
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

BYTE_RES

LSB

pad
pad
pad
pad
pad
pad
pad
pad
pad
pad
pad

PB

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

Figure 10.7: A full COUNTER-cycle’s worth of columns of a SGNX instruction in the case where IRF = 1.
Time flow is from top to bottom. The padding pad in the BYTE_RES column is either 0x00 or 0xff
according to whether NEG = 0 or NEG = 1. The PBi, i = 0, . . . , 7, are the bits of the pivot byte PB,
the LSBi, i = 0, . . . , 7, are the bits of the least significant byte LSB of INPUT_1.

197

Chapter 11

ALU

11.1 ALU Dispatcher
11.1.1 ALU DISPATCHER
The ALU DISPATCHER is the intermediary between the hub and the ALU256. It’s role is to decom-
pose complex arithmetic opcodes (ADD, MUL, SUB, DIV, . . .) into a sequence of ADD / MUL operations to
be transmitted to the ALU256.

Instructions treated

• ADD

• MUL

• SUB

• DIV

• MOD

• EXP

• SMOD

• SDIV

• ADDMOD

• MULMOD

Trace columns

Main Execution columns

• INST

• ARGi,{high,low},DISP, i ∈ [0, 1]: Contains the ith, i ∈ [1, 2] input of the operation.

• OUT{high,low},DISP: Contains the result of the operation to be transmitted back to the ALU
DISPATCHER.

• 〈ALU � 〉

ALU256 link columns: i ∈ [0, 1]: Contains the ith input of the operation.
k ∈ [0, 3]: Contains input for the kth register.

• ALU �
k,256

• ♦ADD_FLAGk,256

• ♦MUL_FLAGk,256

• ARGi,k,{high,low},256, i ∈ [0, 1]: Contains the ith, i ∈ [1, 2] input of the operation.

198

• OUTk,{high,low},256: Contains the result of the operation to be transmitted back to the ALU
DISPATCHER.

• OVERFLOW_FLAGk: is set if the ALU256 result has overflown

Instruction decoder columns These columns, combined with the INST column, should be included
in the instruction decoder.

• ♦ADD_FLAG

• ♦SUB_FLAG

• ♦MUL_FLAG

• ♦DIV_FLAG

• ♦MOD_FLAG

• ♦EXP_FLAG

Auxiliary columns for DIV/MOD/SMOD/SDIV/EXP operations

• QUOTIENTi, i ∈ [0, 3] : auxiliary variables that contains 128 bit decomposition of the quotient.
(The quotient for the ADDMOD/MULMOD operation is a 512 bit number)

• For the SMOD/SDIV
BIT_0,ACC_CARRY_0 are used to calullate bit decompoistion of the dividend.
BIT_1,ACC_CARRY_1 are used to calullate bit decompoistion of the quotient.

• For the EXP
BIT_0,ACC_CARRY_0 are used to calullate bit decompoistion of the exponent.

• REMhigh,low auxiliary variables that contains high and low bits of the remainder for MOD, DIV,
SMOD, SDIV, ADDMOD, MULMOD.

• DIVIDENDhigh,low auxiliary variables that contains high and low bits of the dividend for MOD,
DIV, SMOD, SDIV, ADDMOD, MULMOD.

• STEP_FLAGj , j ∈ [0, 3] : step flag for the ALU DISPATCHER (mod operation)

Constraint set

1. 〈ALU � 〉: {
〈ALU � 〉0 = 0
〈ALU � 〉i+1 ∈ {〈ALU � 〉i, 1 + 〈ALU � 〉i}

2. if 〈ALU � 〉i = 0 : then the entire i-th row is null; in particular the first row is all zeros;

3. if ♦ADD_FLAGi=1 : perform an addition

(a) Set the inputs and results for the ALU256:
ARGj,{high,low},256

i = ARGj,{high,low},DISP
i , j ∈ [0, 1]

OUT{high,low},256
i = OUT{high,low},DISP

i

♦ADD_FLAG0,256
i = 1

♦MUL_FLAG0,256
i = 0

199

(b) Update the ALU �
i,256

, i ∈ [0, 3]
ALU �

0,256
i = ALU �

3,256
i−1 + 1

ALU �
1,256
i = ALU �

0,256
i

ALU �
2,256
i = ALU �

1,256
i

ALU �
3,256
i = ALU �

2,256
i

(c) Increase the ALU DISPATCHER stamp:

〈ALU � 〉i+1 = 〈ALU � 〉i + 1

4. elseif ♦SUB_FLAGi=1 : perform a subtraction

(a) Set the inputs and results for the ALU256:

ARG0,{high,low},256
i = OUT{high,low},DISP

i

ARG1,{high,low},256
i = ARG1,{high,low},DISP

i

OUT{high,low},256
i = ARG0,{high,low},DISP

i

♦ADD_FLAG0,256
i = 1

♦MUL_FLAG0,256
i = 0

(b) Update the ALU �
i,256

, i ∈ [0, 3]
ALU �

0,256
i = ALU �

3,256
i−1 + 1

ALU �
1,256
i = ALU �

0,256
i

ALU �
2,256
i = ALU �

1,256
i

ALU �
3,256
i = ALU �

2,256
i

(c) Increase the ALU DISPATCHER stamp:

〈ALU � 〉i+1 = 〈ALU � 〉i + 1

5. elseif ♦MUL_FLAGi=1 : perform a multiplication

(a) Set the inputs and results for the ALU256:
ARGj,{high,low},256

i = ARGj,{high,low},DISP
i , j ∈ [0, 1]

OUT{high,low},256
i = OUT{high,low},DISP

i

♦ADD_FLAG0,256
i = 0

♦MUL_FLAG0,256
i = 1

(b) Update the ALU �
i,256

, i ∈ [0, 3]
ALU �

0,256
i = ALU �

3,256
i−1 + 1

ALU �
1,256
i = ALU �

0,256
i

ALU �
2,256
i = ALU �

1,256
i

ALU �
3,256
i = ALU �

2,256
i

(c) Increase the ALU DISPATCHER stamp:

〈ALU � 〉i+1 = 〈ALU � 〉i + 1

200

6. elseif ♦MOD_FLAGi=1 : modulo operation
The modulo operation asserts the following equality:

DIVIDEND = MOD ∗ QUOTIENT + REM; REM < MOD

(a) Initialize DIVIDEND, MOD and REM columns:

DIVIDENDlow
i = ARG0,low,DISP

i

DIVIDENDhigh
i = ARG0,high,DISP

i

MODlow
i = ARG1,low,DISP

i

MODhigh
i = ARG1,high,DISP

i

REMlow
i = OUTlow,DISP

i

REMhigh = OUThigh,DISP
i

(b) Set the inputs for the register0 and assert that REM < MOD

ARG0,0,low,256
i = REMlow

i

ARG0,0,high,256
i = REMhigh

i

OUT0,low,256
i = MODlow

i

OUT0,high,256
i = MODhigh

i

♦ADD_FLAG0,256
i = 1

♦MUL_FLAG0,256
i = 0

OVERFLOW_FLAG0 = 0

(c) Set the inputs for the register1 in order to constrain result on MOD ∗ QUOTIENT

ARG0,1,low,256
i = QUOTIENT0

i

ARG0,1,high,256
i = QUOTIENT1

i

ARG1,1,low,256
i = MODlow

i

ARG1,1,high,256
i = MODhigh

i

♦ADD_FLAG1,256
i = 0

♦MUL_FLAG1,256
i = 1

OVERFLOW_FLAG1 = 0

(d) Set the inputs for the register2 in order to constrain result on OUT2 == DIVIDEND
i. Set inputs 

ARG0,2,low,256
i = OUT1,low,256

i

ARG0,2,high,256
i = OUT1,high,256

i

ARG1,2,low,256
i = REMlow

i

ARG1,2,high,256
i = REMhigh

i

♦ADD_FLAG02,256
i = 1

♦MUL_FLAG2,256
i = 0

OVERFLOW_FLAG2 = 0

201

ii. if MODlow
i 6 =0 or MODhigh

i 6 =0{
OUT2,low,256

i = DIVIDENDlow
i

OUT2,high,256
i = DIVIDENDhigh

i

iii. elseif MODlow
i =0 and MODhigh

i =0 special case for MOD = 0{
OUT2,low,256

i = 0

OUT2,high,256
i = 0

(e) Update the ALU �
i,256

, i ∈ [0, 3]
ALU �

0,256
i = ALU �

3,256
i−1 + 1

ALU �
1,256
i = ALU �

0,256
i + 1

ALU �
2,256
i = ALU �

1,256
i + 1

ALU �
3,256
i = ALU �

2,256
i

(f) Increase the ALU DISPATCHER stamp:

〈ALU � 〉i+1 = 〈ALU � 〉i + 1

7. elseif ♦DIV_FLAGi=1 : perform a division

(a) Initialize DIVIDEND, MOD and QUOTIENTcolumns:

DIVIDENDlow
i = ARG0,low,DISP

i

DIVIDENDhigh
i = ARG0,high,DISP

i

MODlow
i = ARG1,low,DISP

i

MODhigh
i = ARG1,high,DISP

i

QUOTIENT0
i = OUTlow,DISP

i

QUOTIENT1
i = OUThigh,DISP

i

(b) Same constraints as for MOD: 6b, 6c, 6d, 6e, 6f

8. elseif ♦SMOD_FLAGi=1 :

(a) if STEP_FLAG0
i=0 AND STEP_FLAG1

i=0 AND STEP_FLAG2
i=0:

first step:
i. Initialize ACC_CARRY {

ACC_CARRY_0i = ARG0,low,DISP
i

ACC_CARRY_1i = ARG0,high,DISP
i

ii. REM, MOD and QUOTIENT remains constant

REMlow
i+1 = REMlow

i

REMhigh
i+1 = REMhigh

i

MODlow
i+1 = MODlow

i

MODhigh
i+1 = MODhigh

i

QUOTIENT0
i+1 = QUOTIENT0

i

QUOTIENT1
i+1 = QUOTIENT1

i

202

iii. ALU �
k,256

, k ∈ [0, 3] remains constant
ALU �

0,256
i = ALU �

3,256
i−1

ALU �
1,256
i = ALU �

0,256
i

ALU �
2,256
i = ALU �

1,256
i

ALU �
3,256
i = ALU �

2,256
i

iv. Set STEP_COUNTER for new operation:

STEP_COUNTERi = 0

v. Set 〈ALU � 〉 for new operation:

〈ALU � 〉i = 〈ALU � 〉i−1 + 1

vi. The 〈ALU � 〉 stamp remains constant:

〈ALU � 〉i+1 = 〈ALU � 〉i

vii. Set next step flags: 
STEP_FLAG0

i+1 = 1

STEP_FLAG1
i+1 = 0

STEP_FLAG2
i+1 = 0

(b) if STEP_FLAG0
i=1 AND STEP_FLAG1

i=0 AND STEP_FLAG2
i=0:

i. if STEP_COUNTERi=127 The operation should be over
STEP_FLAG0

i+1 = 0

STEP_FLAG1
i+1 = 1

STEP_FLAG2
i+1 = 0

ii. elseif STEP_COUNTERi
0
i 6 =127

STEP_FLAG0
i+1 = 1

STEP_FLAG1
i+1 = 0

STEP_FLAG2
i+1 = 0

STEP_COUNTERi+1 = STEP_COUNTERi + 1

iii. ACC_CARRY bit decomposition
BIT_0i = BIT_0i ∗ BIT_0i
ACC_CARRY_0i = 2 ∗ ACC_CARRY_0i+1 + BIT_0i

BIT_1i = BIT_1i ∗ BIT_1i
ACC_CARRY_1i = 2 ∗ ACC_CARRY_1i+1 + BIT_1i

iv. REM, MOD and QUOTIENT remains constant

REMlow
i+1 = REMlow

i

REMhigh
i+1 = REMhigh

i

MODlow
i+1 = MODlow

i

MODhigh
i+1 = MODhigh

i

QUOTIENT0
i+1 = QUOTIENT0

i

QUOTIENT1
i+1 = QUOTIENT1

i

203

v. ALU �
k,256

, k ∈ [0, 3] remains constant
ALU �

0,256
i = ALU �

3,256
i−1

ALU �
1,256
i = ALU �

0,256
i

ALU �
2,256
i = ALU �

1,256
i

ALU �
3,256
i = ALU �

2,256
i

vi. The ALU DISPATCHER stamp remains constant:

〈ALU � 〉i+1 = 〈ALU � 〉i

(c) if STEP_FLAG0
i=0 AND STEP_FLAG1

i=1 AND STEP_FLAG2
i=0:

i. Same constraints as for MOD: 6b, 6c, 6d, 6e,
ii. REM, MOD and QUOTIENT remains constant

REMlow
i+1 = REMlow

i

REMhigh
i+1 = REMhigh

i

MODlow
i+1 = MODlow

i

MODhigh
i+1 = MODhigh

i

QUOTIENT0
i+1 = QUOTIENT0

i

QUOTIENT1
i+1 = QUOTIENT1

i

iii. The ALU DISPATCHER stamp remains constant:

〈ALU � 〉i+1 = 〈ALU � 〉i

iv. Set next step flags: 
STEP_FLAG0

i+1 = 1

STEP_FLAG1
i+1 = 1

STEP_FLAG2
i+1 = 0

(d) if STEP_FLAG0
i=1 AND STEP_FLAG1

i=1 AND STEP_FLAG2
i=0:

i. if BIT_1i=1 Constraint for MOD = −ARG1,0,DISP

A. Inputs and results: 

ARG0,0,low,256
i = MODlow

i

ARG0,0,high,256
i = MODhigh

i

ARG1,0,low,256
i = ARG1,0,low,DISP

i

ARG1,0,high,256
i = ARG1,0,high,DISP

i

OUT0,low,256 = 0

OUT0,high,256 = 0

♦ADD_FLAG0,256
i = 0

♦MUL_FLAG0,256
i = 1

B. if MODlow
i =0 and MODhigh

i =0 special case for 0=-0

OVERFLOW_FLAG0 = 0

204

C. elseif MODlow
i 6 =0 or MODhigh

i 6 =0

OVERFLOW_FLAG0 = 1

ii. elseif BIT_1i=0 MOD = ARG0,0,256{
MODlow

i = ARG1,0,low,DISP
i

MODhigh
i = ARG1,0,high,DISP

i

iii. if BIT_0i=1 REM = −OUTDISP

A. Inputs and results: 

ARG0,0,low,256
i = REMlow

i

ARG0,0,high,256
i = REMhigh

i

ARG1,0,low,256
i = OUTlow,DISP

i

ARG1,0,high,256
i = OUThigh,DISP

i

OUT0,low,256 = 0

OUT0,high,256 = 0

♦ADD_FLAG0,256
i = 0

♦MUL_FLAG0,256
i = 1

B. if REMlow
i =0 and REMhigh

i =0

OVERFLOW_FLAG0 = 0

C. elseif REMlow
i 6 =0 or REMhigh

i 6 =0

OVERFLOW_FLAG0 = 1

iv. elseif BIT_0i=0 REM = OUTDISP{
REMlow

i = OUTlow,DISP
i

REMhigh
i = OUThigh,DISP

i

v. Update the ALU �
k,256

, k ∈ [0, 3]
ALU �

0,256
i = ALU �

3,256
i−1 + BIT_0

ALU �
1,256
i = ALU �

0,256
i + BIT_1

ALU �
2,256
i = ALU �

1,256
i

ALU �
3,256
i = ALU �

2,256
i

vi. Increase the ALU DISPATCHER stamp:

〈ALU � 〉i+1 = 〈ALU � 〉i + 1

vii. Set next step flags: 
STEP_FLAG0

i+1 = 0

STEP_FLAG1
i+1 = 0

STEP_FLAG2
i+1 = 0

9. elseif ♦SDIV_FLAGi=1 :

205

(a) The same constraints as for SMOD: 8a, 8b, 8c
(b) if STEP_FLAG0

i=1 AND STEP_FLAG1
i=1 AND STEP_FLAG2

i=0:

i. if BIT_0i=1 and BIT_1i=1;
MOD = −ARG1,DISP and QUOTIENT = OUT1,DISP

A. Set inputs 

ARG0,0,low,256
i = MODlow

i

ARG0,0,high,256
i = MODhigh

i

ARG1,0,low,256
i = ARG1,low,DISP

i

ARG1,0,high,256
i = ARG1,high,DISP

i

OUT0,low,256 = 0

OUT0,high,256 = 0

QUOTIENT0
i = OUTlow,DISP

QUOTIENT1
i = OUThigh,DISP

♦ADD_FLAG0,256
i = 1

♦MUL_FLAG0,256
i = 0

B. if MODlow
i =0 and MODhigh

i =0 special case for 0=-0

OVERFLOW_FLAG0 = 0

C. elseif MODlow
i 6 =0 or MODhigh

i 6 =0

OVERFLOW_FLAG0 = 1

ii. elseif BIT_0i=1 and BIT_1i=0
MOD = ARG1,DISP and QUOTIENT = −OUT1,DISP

A. Inputs and results: 

MODlow
i = ARG1,low,DISP

i

MODhigh
i = ARG1,high,DISP

i

ARG0,1,low,256
i = QUOTIENT0

i

ARG0,1,high,256
i = QUOTIENT1

i

ARG1,1,low,256
i = OUTlow,DISP

ARG1,1,high,256
i = OUThigh,DISP

OUT0,low,256 = 0

OUT0,high,256 = 0

♦ADD_FLAG0,256
i = 1

♦MUL_FLAG0,256
i = 0

B. if QUOTIENT0
i=0 and QUOTIENT1

i=0 special case for 0=-0

OVERFLOW_FLAG1 = 0

206

C. elseif QUOTIENT0
i 6 =0 or QUOTIENT1

i 6 =0

OVERFLOW_FLAG1 = 1

iii. elseif BIT_0i=0 and BIT_1i=1
MOD = −ARG1,DISP and QUOTIENT = −OUT1,DISP

A. Inputs and results for MOD:

ARG0,0,low,256
i = MODlow

i

ARG0,0,high,256
i = MODhigh

i

ARG1,0,low,256
i = ARG1,low,DISP

i

ARG1,0,high,256
i = ARG1,high,DISP

i

OUT0,low,256 = 0

OUT0,high,256 = 0

♦ADD_FLAG0,256
i = 1

♦MUL_FLAG0,256
i = 0

B. if MODlow
i =0 and MODhigh

i =0 special case for 0=-0

OVERFLOW_FLAG0 = 0

C. elseif MODlow
i 6 =0 or MODhigh

i 6 =0

OVERFLOW_FLAG0 = 1

D. Inputs and results for QUOTIENT:

ARG0,1,low,256
i = QUOTIENT0

i

ARG0,1,high,256
i = QUOTIENT1

i

ARG1,1,low,256
i = OUTlow,DISP

i

ARG1,1,high,256
i = OUThigh,DISP

i

OUT1,low,256 = 0

OUT1,high,256 = 0

♦ADD_FLAG1,256
i = 1

♦MUL_FLAG1,256
i = 0

E. if QUOTIENT0
i=0 and QUOTIENT1

i=0 special case for 0=-0

OVERFLOW_FLAG1 = 0

F. elseif QUOTIENT0
i 6 =0 or QUOTIENT1

i 6 =0

OVERFLOW_FLAG1 = 1

207

iv. elseif BIT_0i=0 and BIT_1i=0
MOD = ARG1,DISP and QUOTIENT = OUT1,DISP

A. Set MOD and QUOTIENT

MODlow
i = ARG1,low,DISP

i

MODhigh
i = ARG1,high,DISP

i

QUOTIENT0
i = OUTlow,DISP

QUOTIENT1
i = OUThigh,DISP

(c) Update ALU �
k,64

, k ∈ [0, 3]
ALU �

0,256
i = ALU �

3,256
i−1 + BIT_1

ALU �
1,256
i = ALU �

0,256
i + xor(BIT_0,BIT_1)

ALU �
2,256
i = ALU �

1,256
i

ALU �
3,256
i = ALU �

2,256
i

(d) Increase the ALU DISPATCHER stamp:

〈ALU � 〉i+1 = 〈ALU � 〉i + 1

(e) Set next step flags: 
STEP_FLAG0

i+1 = 0

STEP_FLAG1
i+1 = 0

STEP_FLAG2
i+1 = 0

10. elseif MULMOD=1:
MULMOD has to satisfy the following expression:

ARG0,DISP ∗ ARG1,DISP = QUOTIENT ∗MOD + REM; REM < MOD

where

• ARG0,DISP: 32 byte number
• ARG1,DISP: 32 byte number
• MOD: 32 byte number
• QUOTIENT: 64 byte number
• REM: 32 byte number

Since we can’t perform 64 byte arithmetic directly, we need to decompose the above expression
in terms of 128 bytes:

ARG0,DISP ∗ ARG1,DISP = x0 + x1 ∗ 2128 + x2 ∗ 2256 + x3 ∗ 2384

QUOTIENT ∗MOD + REM = y0 + y1 ∗ 2128 + y2 ∗ 2256 + y3 ∗ 2384

and compare only the relevant limbs x0 = y0, x1 = y1...
In steps 0-4: decompose:

QUOTIENT ∗MOD + REM

(a) if STEP_FLAG0
i=0 AND STEP_FLAG1

i=0 AND STEP_FLAG2
i=0:

208

i. Set MOD and REM: 

REMlow
i = OUTlow,DISP

REMhigh
i = OUTlow,HIGH

MODlow
i = ARG2,low,DISP

i

MODhigh
i = ARG2,high,DISP

i

ii. Register0 

ARG0,0,low,256
i = QUOTIENT0

i

ARG0,0,high,256
i = 0

ARG1,0,low,256
i = MODlow

i

ARG1,0,high,256
i = 0

♦ADD_FLAG0,256
i = 0

♦MUL_FLAG0,256
i = 1

OVERFLOW_FLAG0 = 0

iii. Register1 

ARG0,1,low,256
i = OUT0,low

i

ARG0,1,high,256
i = 0

ARG1,1,low,256
i = REMlow

i

ARG1,1,high,256
i = 0

♦ADD_FLAG1,256
i = 1

♦MUL_FLAG1,256
i = 0

OVERFLOW_FLAG1 = 0

iv. Register2 

ARG0,2,low,256
i = QUOTIENT0

i

ARG0,2,high,256
i = 0

ARG1,2,low,256
i = MODhigh

i

ARG1,2,high,256
i = 0

♦ADD_FLAG2,256
i = 0

♦MUL_FLAG2,256
i = 1

OVERFLOW_FLAG2 = 0

v. Register3 

ARG0,3,low,256
i = QUOTIENT1

i

ARG0,3,high,256
i = 0

ARG1,3,low,256
i = MODlow

i

ARG1,3,high,256
i = 0

♦ADD_FLAG3,256
i = 0

♦MUL_FLAG3,256
i = 1

OVERFLOW_FLAG3 = 0

209

vi. REM, MOD and QUOTIENT remains constant

REMlow
i+1 = REMlow

i

REMhigh
i+1 = REMhigh

i

MODlow
i+1 = MODlow

i

MODhigh
i+1 = MODhigh

i

QUOTIENT0
i+1 = QUOTIENT0

i

QUOTIENT1
i+1 = QUOTIENT1

i

QUOTIENT2
i+1 = QUOTIENT2

i

QUOTIENT3
i+1 = QUOTIENT3

i

vii. Update ALU �
k,64

, k ∈ [0, 3]
ALU �

0,256
i = ALU �

3,256
i−1 + 1

ALU �
1,256
i = ALU �

0,256
i + 1

ALU �
2,256
i = ALU �

1,256
i + 1

ALU �
3,256
i = ALU �

2,256
i + 1

viii. The ALU DISPATCHER stamp remains constant:

〈ALU � 〉i+1 = 〈ALU � 〉i

ix. Set next step flags: 
STEP_FLAG0

i+1 = 1

STEP_FLAG1
i+1 = 0

STEP_FLAG2
i+1 = 0

(b) if STEP_FLAG0
i=1 AND STEP_FLAG1

i=0 AND STEP_FLAG2
i=0:

i. Register0 

ARG0,0,low,256
i = QUOTIENT1

i

ARG0,0,high,256
i = 0

ARG1,0,low,256
i = MODhigh

i

ARG1,0,high,256
i = 0

♦ADD_FLAG0,256
i = 0

♦MUL_FLAG0,256
i = 1

OVERFLOW_FLAG0 = 0

ii. Register1 

ARG0,1,low,256
i = QUOTIENT2

i

ARG0,1,high,256
i = 0

ARG1,1,low,256
i = MODlow

i

ARG1,1,high,256
i = 0

♦ADD_FLAG1,256
i = 0

♦MUL_FLAG1,256
i = 1

OVERFLOW_FLAG1 = 0

210

iii. Register2 

ARG0,2,low,256
i = QUOTIENT3

i

ARG0,2,high,256
i = 0

ARG1,2,low,256
i = MODlow

i

ARG1,2,high,256
i = 0

♦ADD_FLAG2,256
i = 0

♦MUL_FLAG2,256
i = 1

OVERFLOW_FLAG2 = 0

iv. Register3 

ARG0,3,low,256
i = OUT0,high,256

i−1

ARG0,3,high,256
i = 0

ARG1,3,low,256
i = OUT2,low,256

i−1

ARG1,3,high,256
i = 0

♦ADD_FLAG3,256
i = 0

♦MUL_FLAG3,256
i = 1

OVERFLOW_FLAG3 = 0

v. REM, MOD and QUOTIENT remains constant

REMlow
i+1 = REMlow

i

REMhigh
i+1 = REMhigh

i

MODlow
i+1 = MODlow

i

MODhigh
i+1 = MODhigh

i

QUOTIENT0
i+1 = QUOTIENT0

i

QUOTIENT1
i+1 = QUOTIENT1

i

QUOTIENT2
i+1 = QUOTIENT2

i

QUOTIENT3
i+1 = QUOTIENT3

i

vi. Update ALU �
k,64

, k ∈ [0, 3]
ALU �

0,256
i = ALU �

3,256
i−1 + 1

ALU �
1,256
i = ALU �

0,256
i + 1

ALU �
2,256
i = ALU �

1,256
i + 1

ALU �
3,256
i = ALU �

2,256
i + 1

vii. The ALU DISPATCHER stamp remains constant:

〈ALU � 〉i+1 = 〈ALU � 〉i

viii. Set next step flags: 
STEP_FLAG0

i+1 = 0

STEP_FLAG1
i+1 = 1

STEP_FLAG2
i+1 = 0

(c) if STEP_FLAG0
i=0 AND STEP_FLAG1

i=1 AND STEP_FLAG2
i=0:

211

i. Register0 

ARG0,0,low,256
i = OUT3,low,256

i−2

ARG0,0,high,256
i = 0

ARG1,0,low,256
i = OUT3,low,256

i−1

ARG1,0,high,256
i = 0

♦ADD_FLAG0,256
i = 1

♦MUL_FLAG0,256
i = 0

OVERFLOW_FLAG0 = 0

ii. Register1 

ARG0,1,low,256
i = OUT0,low,256

i

ARG0,1,high,256
i = 0

ARG1,1,low,256
i = OUT1,high,256

i−2

ARG1,1,high,256
i = 0

♦ADD_FLAG1,256
i = 1

♦MUL_FLAG1,256
i = 0

OVERFLOW_FLAG1 = 0

iii. Register2 

ARG0,2,low,256
i = OUT1,low,256

i

ARG0,2,high,256
i = 0

ARG1,2,low,256
i = REMhigh

i

ARG1,2,high,256
i = 0

♦ADD_FLAG2,256
i = 1

♦MUL_FLAG2,256
i = 0

OVERFLOW_FLAG2 = 0

iv. Register3 

ARG0,3,low,256
i = OUT2,high,256

i−2

ARG0,3,high,256
i = 0

ARG1,3,low,256
i = OUT3,high,256

i−2

ARG1,3,high,256
i = 0

♦ADD_FLAG3,256
i = 1

♦MUL_FLAG3,256
i = 0

OVERFLOW_FLAG3 = 0

212

v. REM, MOD and QUOTIENT remains constant

REMlow
i+1 = REMlow

i

REMhigh
i+1 = REMhigh

i

MODlow
i+1 = MODlow

i

MODhigh
i+1 = MODhigh

i

QUOTIENT0
i+1 = QUOTIENT0

i

QUOTIENT1
i+1 = QUOTIENT1

i

QUOTIENT2
i+1 = QUOTIENT2

i

QUOTIENT3
i+1 = QUOTIENT3

i

vi. Update ALU �
k,64

, k ∈ [0, 3]
ALU �

0,256
i = ALU �

3,256
i−1 + 1

ALU �
1,256
i = ALU �

0,256
i + 1

ALU �
2,256
i = ALU �

1,256
i + 1

ALU �
3,256
i = ALU �

2,256
i + 1

vii. The ALU DISPATCHER stamp remains constant:

〈ALU � 〉i+1 = 〈ALU � 〉i

viii. Set next step flags: 
STEP_FLAG0

i+1 = 1

STEP_FLAG1
i+1 = 1

STEP_FLAG2
i+1 = 0

(d) if STEP_FLAG0
i=1 AND STEP_FLAG1

i=1 AND STEP_FLAG2
i=0:

i. Register0 

ARG0,0,low,256
i = OUT0,low,256

i−2

ARG0,0,high,256
i = 0

ARG1,0,low,256
i = OUT1,low,256

i−2

ARG1,0,high,256
i = 0

♦ADD_FLAG0,256
i = 1

♦MUL_FLAG0,256
i = 0

OVERFLOW_FLAG0 = 0

ii. Register1 

ARG0,1,low,256
i = OUT0,low,256

i

ARG0,1,high,256
i = 0

ARG1,1,low,256
i = OUT1,high,256

i−2

ARG1,1,high,256
i = 0

♦ADD_FLAG1,256
i = 1

♦MUL_FLAG1,256
i = 0

OVERFLOW_FLAG1 = 0

213

iii. Register2

ARG0,2,low,256
i = OUT1,low,256

i

ARG0,2,high,256
i = 0

ARG1,2,low,256
i = OUT3,high,256

i−2 + OUT0,high,256
i−1 + OUT1,high,256

i−1 + OUT2,high,256
i−1

ARG1,2,high,256
i = 0

♦ADD_FLAG2,256
i = 1

♦MUL_FLAG2,256
i = 0

OVERFLOW_FLAG2 = 0

iv. Register3

ARG0,3,low,256
i = OUT0,high,256

i−2

ARG0,3,high,256
i = 0

ARG1,3,low,256
i = OUT1,high,256

i−2 + OUT2,low,256
i−2 + OUT3,high,256

i−1 +

OUT0,high,256
i + OUT1,high,256

i + OUT2,high,256
i

ARG1,3,high,256
i = 0

♦ADD_FLAG3,256
i = 1

♦MUL_FLAG3,256
i = 0

OVERFLOW_FLAG3 = 0

v. REM, MOD and QUOTIENT remains constant

REMlow
i+1 = REMlow

i

REMhigh
i+1 = REMhigh

i

MODlow
i+1 = MODlow

i

MODhigh
i+1 = MODhigh

i

QUOTIENT0
i+1 = QUOTIENT0

i

QUOTIENT1
i+1 = QUOTIENT1

i

QUOTIENT2
i+1 = QUOTIENT2

i

QUOTIENT3
i+1 = QUOTIENT3

i

vi. Update ALU �
k,64

, k ∈ [0, 3]
ALU �

0,256
i = ALU �

3,256
i−1 + 1

ALU �
1,256
i = ALU �

0,256
i + 1

ALU �
2,256
i = ALU �

1,256
i + 1

ALU �
3,256
i = ALU �

2,256
i + 1

214

vii. REM and QUOTIENT remains constant

REMlow
i+1 = REMlow

i

REMhigh
i+1 = REMhigh

i

MODlow
i+1 = MODlow

i

MODhigh
i+1 = MODhigh

i

QUOTIENT0
i+1 = QUOTIENT0

i

QUOTIENT1
i+1 = QUOTIENT1

i

QUOTIENT2
i+1 = QUOTIENT2

i

QUOTIENT3
i+1 = QUOTIENT3

i

viii. The ALU DISPATCHER stamp remains constant:

〈ALU � 〉i+1 = 〈ALU � 〉i

ix. Set next step flags: 
STEP_FLAG0

i+1 = 0

STEP_FLAG1
i+1 = 0

STEP_FLAG2
i+1 = 1

(e) if STEP_FLAG0
i=0 AND STEP_FLAG1

i=0 AND STEP_FLAG2
i=1:

i. Register0 

ARG0,0,low,256
i = QUOTIENT2

i

ARG0,0,high,256
i = 0

ARG1,0,low,256
i = MODhigh

i

ARG1,0,high,256
i = 0

♦ADD_FLAG0,256
i = 0

♦MUL_FLAG0,256
i = 1

OVERFLOW_FLAG0 = 0

ii. Register1 check: REM < MOD

ARG0,1,low,256
i = OUT3,low,256

i−1

ARG0,1,high,256
i = 0

ARG1,1,low,256
i = OUT0,low,256

i

ARG1,1,high,256
i = 0

♦ADD_FLAG1,256
i = 1

♦MUL_FLAG1,256
i = 0

OVERFLOW_FLAG1 = 0

215

iii. Register2 

ARG0,2,low,256
i = REMlow

i

ARG0,2,high,256
i = REMhigh

i

Ras2,low,256
i = MODlow

Ras2,high,256i = MODhigh

♦ADD_FLAG2,256
i = 1

♦MUL_FLAG2,256
i = 0

OVERFLOW_FLAG2 = 0

iv. Update ALU �
k,64

, k ∈ [0, 3]
ALU �

0,256
i = ALU �

3,256
i−1 + 1

ALU �
1,256
i = ALU �

0,256
i + 1

ALU �
2,256
i = ALU �

1,256
i + 1

ALU �
3,256
i = ALU �

2,256
i + 0

v. The ALU DISPATCHER stamp remains constant:

〈ALU � 〉i+1 = 〈ALU � 〉i

vi. Set next step flags: 
STEP_FLAG0

i+1 = 1

STEP_FLAG1
i+1 = 0

STEP_FLAG2
i+1 = 1

In steps 5-7: decompose:
ARG0,low,DISP ∗ ARG1,low,DISP

i

(f) if STEP_FLAG0
i=1 AND STEP_FLAG1

i=0 AND STEP_FLAG2
i=1:

i. Register0 

ARG0,0,low,256
i = ARG0,low,DISP

i

ARG0,0,high,256
i = 0

ARG1,0,low,256
i = ARG1,low,DISP

i

ARG1,0,high,256
i = 0

♦ADD_FLAG0,256
i = 0

♦MUL_FLAG0,256
i = 1

OVERFLOW_FLAG0 = 0

ii. Register1 

ARG0,1,low,256
i = ARG0,low,DISP

i

ARG0,1,high,256
i = 0

ARG1,1,low,256
i = ARG1,high,DISP

i

ARG1,1,high,256
i = 0

♦ADD_FLAG1,256
i = 0

♦MUL_FLAG1,256
i = 1

OVERFLOW_FLAG1 = 0

216

iii. Register2 

ARG0,2,low,256
i = ARG0,high,DISP

i

ARG0,2,high,256
i = 0

ARG1,2,low,256
i = ARG1,low,DISP

i

ARG1,2,high,256
i = 0

♦ADD_FLAG2,256
i = 1

♦MUL_FLAG2,256
i = 0

OVERFLOW_FLAG2 = 0

iv. Register3 

ARG0,3,low,256
i = ARG0,high,DISP

i

ARG0,3,high,256
i = 0

ARG1,3,low,256
i = ARG1,high,DISP

i

ARG1,3,high,256
i = 0

♦ADD_FLAG3,256
i = 0

♦MUL_FLAG3,256
i = 1

OVERFLOW_FLAG3 = 0

v. if MODlow=0 and MODhigh=0

OUT1,low,256
i−5 = 0

vi. elseif MODlow 6 =0 or MODhigh 6 =0

OUT0,low,256 = OUT1,low,256
i−5

vii. Update ALU �
k,64

, k ∈ [0, 3]
ALU �

0,256
i = ALU �

3,256
i−1 + 1

ALU �
1,256
i = ALU �

0,256
i + 1

ALU �
2,256
i = ALU �

1,256
i + 1

ALU �
3,256
i = ALU �

2,256
i + 1

viii. REM, MOD and QUOTIENT remains constant

REMlow
i+1 = REMlow

i

REMhigh
i+1 = REMhigh

i

MODlow
i+1 = MODlow

i

MODhigh
i+1 = MODhigh

i

QUOTIENT0
i+1 = QUOTIENT0

i

QUOTIENT1
i+1 = QUOTIENT1

i

QUOTIENT2
i+1 = QUOTIENT2

i

QUOTIENT3
i+1 = QUOTIENT3

i

ix. The ALU DISPATCHER stamp remains constant:

〈ALU � 〉i+1 = 〈ALU � 〉i

217

x. Set next step flags: 
STEP_FLAG0

i+1 = 0

STEP_FLAG1
i+1 = 1

STEP_FLAG2
i+1 = 1

(g) If STEP_FLAG0
i=0 AND STEP_FLAG1

i=1 AND STEP_FLAG2
i=1:

i. Register0 

ARG0,0,low,256
i = OUT0,high,256

i−1

ARG0,0,high,256
i = 0

ARG1,0,low,256
i = OUT1,low,246

i−1

ARG1,0,high,256
i = 0

♦ADD_FLAG0,256
i = 1

♦MUL_FLAG0,256
i = 0

OVERFLOW_FLAG0 = 0

ii. Register1 

ARG0,1,low,256
i = OUT2,low,256

i−1

ARG0,1,high,256
i = 0

ARG1,1,low,256
i = OUT0,low,256

i−1

ARG1,1,high,256
i = 0

♦ADD_FLAG1,256
i = 1

♦MUL_FLAG1,256
i = 0

OVERFLOW_FLAG1 = 0

iii. Register2 

ARG0,2,low,256
i = OUT1,high,256

i−1

ARG0,2,high,256
i = 0

ARG1,2,low,256
i = OUT2,high,256

i−1

ARG1,2,high,256
i = 0

♦ADD_FLAG2,256
i = 1

♦MUL_FLAG2,256
i = 0

OVERFLOW_FLAG2 = 0

iv. Register3 

ARG0,3,low,256
i = OUT3,low,256

i−1

ARG0,3,high,256
i = 0

ARG1,3,low,256
i = OUT2,low,256

i

ARG1,3,high,256
i = 0

♦ADD_FLAG3,256
i = 0

♦MUL_FLAG3,256
i = 1

OVERFLOW_FLAG3 = 0

218

v. if MODlow=0 and MODhigh=0

OUT2,low,256
i−4 = 0

vi. elseif MODlow 6 =0 or MODhigh 6 =0

OUT1,low,256 = OUT2,low,256
i−4

vii. Update ALU �
k,64

, k ∈ [0, 3]
ALU �

0,256
i = ALU �

3,256
i−1 + 1

ALU �
1,256
i = ALU �

0,256
i + 1

ALU �
2,256
i = ALU �

1,256
i + 1

ALU �
3,256
i = ALU �

2,256
i + 1

viii. REM, MOD and QUOTIENT remains constant

REMlow
i+1 = REMlow

i

REMhigh
i+1 = REMhigh

i

MODlow
i+1 = MODlow

i

MODhigh
i+1 = MODhigh

i

QUOTIENT0
i+1 = QUOTIENT0

i

QUOTIENT1
i+1 = QUOTIENT1

i

QUOTIENT2
i+1 = QUOTIENT2

i

QUOTIENT3
i+1 = QUOTIENT3

i

ix. The ALU DISPATCHER stamp remains constant:

〈ALU � 〉i+1 = 〈ALU � 〉i

x. Set next step flags: 
STEP_FLAG0

i+1 = 1

STEP_FLAG1
i+1 = 1

STEP_FLAG2
i+1 = 1

(h) if STEP_FLAG0
i=1 AND STEP_FLAG1

i=1 AND STEP_FLAG2
i=1:

i. Register0 

ARG0,0,low,256
i = OUT0,high,256

i−1

ARG0,0,high,256
i = 0

ARG1,0,low,256
i = OUT1,high,256

i−1

ARG1,0,high,256
i = 0

♦ADD_FLAG0,256
i = 1

♦MUL_FLAG0,256
i = 0

OVERFLOW_FLAG0 = 0

219

ii. Register1 

ARG0,1,low,256
i = OUT3,low,256

i−1

ARG0,1,high,256
i = 0

ARG1,1,low,256
i = OUT0,low,256

i

ARG1,1,high,256
i = 0

♦ADD_FLAG1,256
i = 1

♦MUL_FLAG1,256
i = 0

OVERFLOW_FLAG1 = 0

iii. Register2

ARG0,2,low,256
i = OUT2,high,256

i−1 + OUT3,high,256
i−1 + OUT1,high,256

i

ARG0,2,high,256
i = 0

ARG1,2,low,256
i = OUT3,high,256

i−2

ARG1,2,high,256
i = 0

♦ADD_FLAG2,256
i = 1

♦MUL_FLAG2,256
i = 0

OVERFLOW_FLAG2 = 0

iv. if MODlow=0 and MODhigh=0{
OUT2,low,256

i−4 = 0

OUT1,low,256
i−3 = 0

v. elseif MODlow 6 =0 or MODhigh 6 =0{
OUT1,low,256 = OUT2,low,256

i−4

OUT2,low,256 = OUT1,low,256
i−3

vi. Update ALU �
k,64

, k ∈ [0, 3]
ALU �

0,256
i = ALU �

3,256
i−1 + 1

ALU �
1,256
i = ALU �

0,256
i + 1

ALU �
2,256
i = ALU �

1,256
i + 1

ALU �
3,256
i = ALU �

2,256
i

vii. REM, MOD and QUOTIENT remains constant

REMlow
i+1 = REMlow

i

REMhigh
i+1 = REMhigh

i

MODlow
i+1 = MODlow

i

MODhigh
i+1 = MODhigh

i

QUOTIENT0
i+1 = QUOTIENT0

i

QUOTIENT1
i+1 = QUOTIENT1

i

QUOTIENT2
i+1 = QUOTIENT2

i

QUOTIENT3
i+1 = QUOTIENT3

i

220

viii. The ALU DISPATCHER stamp remains constant:

〈ALU � 〉i+1 = 〈ALU � 〉i

ix. Set next step flags: 
STEP_FLAG0

i+1 = 0

STEP_FLAG1
i+1 = 0

STEP_FLAG2
i+1 = 0

11. elseif ♦ADDMOD_FLAGi=1:

(a) Same constraints as for MULMOD: 10a, 10b, 10c, 10d, 10e
In step 5: decompose:

ARG0,low,DISP + ARG1,low,DISP
i

(b) if STEP_FLAG0
i=1 AND STEP_FLAG1

i=0 AND STEP_FLAG2
i=1:

i. Register0 

ARG0,0,low,256
i = ARG0,low,DISP

i

ARG0,0,high,256
i = 0

ARG1,0,low,256
i = ARG1,low,DISP

i

ARG1,0,high,256
i = 0

♦ADD_FLAG0,256
i = 1

♦MUL_FLAG0,256
i = 0

OVERFLOW_FLAG0 = 0

ii. Register1 

ARG0,1,low,256
i = ARG0,high,DISP

i

ARG0,1,high,256
i = 0

ARG1,1,low,256
i = ARG1,high,DISP

i ARG1,1,high,256
i = 0

♦ADD_FLAG1,256
i = 1

♦MUL_FLAG1,256
i = 0

OVERFLOW_FLAG1 = 0

iii. Register2 

ARG0,2,low,256
i = OUT0,high,256

i

ARG0,2,high,256
i = 0

ARG1,2,low,256
i = OUT1,low,256

i

ARG1,2,high,256
i = 0

♦ADD_FLAG2,256
i = 1

♦MUL_FLAG2,256
i = 0

OVERFLOW_FLAG2 = 0

221

iv. Register3 

ARG0,3,low,256
i = OUT1,high,256

i

ARG0,3,high,256
i = 0

ARG1,3,low,256
i = OUT2,high,256

i

ARG1,3,high,256
i = 0

♦ADD_FLAG3,256
i = 1

♦MUL_FLAG3,256
i = 0

OVERFLOW_FLAG3 = 0

v. if MODlow=0 and MODhigh=0
OUT1,low,256

i−5 = 0

OUT2,low,256
i−3 = 0

OUT2,low,256
i−2 = 0

vi. elseif MODlow 6 =0 or MODhigh 6 =0
OUT0,low,256

i = OUT1,low,256
i−5

OUT2,low,256
i = OUT2,low,256

i−3

OUT3,low,256
i = OUT2,low,256

i−2

vii. Update ALU �
k,256

, k ∈ [0, 3]
ALU �

0,256
i = ALU �

3,256
i−1 + 1

ALU �
1,256
i = ALU �

0,256
i + 1

ALU �
2,256
i = ALU �

1,256
i + 1

ALU �
3,256
i = ALU �

2,256
i + 1

viii. The ALU DISPATCHER stamp remains constant:

〈ALU � 〉i+1 = 〈ALU � 〉i + 1

ix. Set next step flags: 
STEP_FLAG0

i+1 = 0

STEP_FLAG1
i+1 = 0

STEP_FLAG2
i+1 = 0

12. elseif ♦EXP_FLAGi=1 :

(a) BIT_0 is binary:
BIT_0i ∗ BIT_0i = BIT_0i

(b) if STEP_COUNTERi=0: if we start a new arithmetic operation, we have to set auxiliary
variables:
i. Initialize ACC_CARRY  ACC_CARRY_0i = ARG0,low,DISP

i

ACC_CARRY_1i = ARG0,high,DISP
i

STEP_COUNTER = 0

222

ii. Compute OUT0,low,256
i and OUT0,high,256

i

ARG0,0,low,256
i = 1

ARG0,0,high,256
i = 0

ARG1,0,low,256
i = OUTlow,DISP

i

ARG1,0,high,256
i = OUThigh,DISP

i

♦ADD_FLAG3,256
i = 0

♦MUL_FLAG3,256
i = 1

iii. Update ALU �
k,256

, k ∈ [0, 3]
ALU �

0,256
i = ALU �

3,256
i−1 + 1

ALU �
1,256
i = ALU �

0,256
i

ALU �
2,256
i = ALU �

1,256
i

ALU �
3,256
i = ALU �

2,256
i

iv. 〈ALU � 〉i+1 = 〈ALU � 〉i
(c) elseif STEP_COUNTERi 6 =0: if we continue the previous arithmetic operation

i. if ACC_CARRY_0i=0 and if ACC_CARRY_1i=0 computation is done: OUT0.low,256
i−1 = 1

OUT0.high,256
i−1 = 0

〈ALU � 〉i+1 = 〈ALU � 〉i + 1

ii. elseif ACC_CARRY_0i 6 =0 or if ACC_CARRY_1i 6 =0

A. 〈ALU � 〉i+1 = 〈ALU � 〉i
B. if BIT_0i=0

square

C. elseif BIT_0i 6 =0

squareAndMultiply

13. square =

(a) Square the inputs 

ARG0,0,low,256
i = OUT0,low,256

i+1

ARG0,0,high,256
i = OUT0,high,256

i+1

ARG1,0,low,256
i = OUT0,low,256

i+1

ARG1,0,high,256
i = OUT0,low,256

i+1

♦ADD_FLAG3,256
i = 0

♦MUL_FLAG3,256
i = 1

(b) Update ALU �
k,256

, k ∈ [0, 3]
ALU �

0,256
i = ALU �

3,256
i−1 + 1

ALU �
1,256
i = ALU �

0,256
i

ALU �
2,256
i = ALU �

1,256
i

ALU �
3,256
i = ALU �

2,256
i

223

(c) STEP_COUNTERi+1 = STEP_COUNTERi + 1

(d) if STEP_COUNTERi=129 ACC_CARRY_0i+1 = ACC_CARRY_1i
ACC_CARRY_0i = 0
ACC_CARRY_1i+1 = 0

(e) elseif STEP_COUNTERi 6 =129

ACC_CARRY_0i = 2 ∗ ACC_CARRY_0i+1

14. squareAndMultiply =

(a) if STEP_COUNTERi+1=STEP_COUNTERi

i. Multiply the inputs 

ARG0,0,low
i = ARG0,low,DISP

i

ARG0,0,high
i = ARG0,high,DISP

i

ARG1,0,low
i = OUT0,low,256

i

ARG1,0,high
i = OUT0,high,256

i

♦ADD_FLAG3,256
i = 0

♦MUL_FLAG3,256
i = 1

ii. Update ALU �
k,256

, k ∈ [0, 3]
ALU �

0,256
i = ALU �

3,256
i−1 + 1

ALU �
1,256
i = ALU �

0,256
i

ALU �
2,256
i = ALU �

1,256
i

ALU �
3,256
i = ALU �

2,256
i

iii.
ACC_CARRY_0i+1 = ACC_CARRY_0i

(b) if STEP_COUNTERi+1 6 =STEP_COUNTERi

i. The same as for square 13a, 13b, 13c
ii. if STEP_COUNTERi=129 ACC_CARRY_0i+1 = ACC_CARRY_1i

ACC_CARRY_0i = 0
ACC_CARRY_1i+1 = 0

iii. elseif STEP_COUNTERi 6 =129

ACC_CARRY_0i = 2 ∗ ACC_CARRY_0i+1 + 1

11.2 ALU 264
11.2.1 ALU256
This submodule is linked to the ALU DISPATCHER - requests for arithmetic operations are submitted
by the ALU DISPATCHER to the ALU256 which, in turn, communicates with its child submodule
- the ALU64, sending requests to compute 64 bit arithmetic operations. Since that the arithmetic

224

operations of this module may involve numbers whose size exceed the maximal field size (roughly 254
bits for the bn254 curve), the ALU256 will decompose the result of the arithmetic operation in two
parts: the high and the low 128 bits (in big endian decomposition, ie the high 128 bits are the most
significant bits), which will be denoted by superscripts: ·high and ·low. The ALU256 communicates
with the ALU64 using 4 input wires: that way, every row of the ALU256 can send at most 4 different
requests to the ALU64, making the computation more efficient.

To clarify a little the constraint set (in particular the way we define the requests to the ALU64),
we provide here a table that details the communications between the ALU256 and the ALU64. A pair
of inputs together with operation flag is called a Register

Step I0,0,64i Op0,64 I1,0,64i I0,1,64i Op1,64 I1,1,64i I0,2,64i Op2,64 I1,2,64i I0,3,64i Op3,64 I1,3,64i

1 A0 × B0 A0 × B1 A1 × B0 A0 × B2

2 A1 × B1 A2 × B0 A0 × B3 A1 × B2

3 A2 × B1 A3 × B0 A1 × B3 A2 × B2

4 A3 × B1 A2 × B3 A3 × B2 A3 × B3

5 R1
i−4 + C0

i−4 R2
i−4 + R0

i C1
i−4 + C2

i−4 R3
i−4 + R0

i−3

6 R1
i−4 + R2

i−1 C0
i−1 + C1

i−1 R3
i−1 + R0

i R1
i + R2

i

7 C3
i−6 + C0

i−5 R2
i−5 + C1

i−5 R3
i−5 + R0

i−4 R1
i−4 + R0

i

8 R1
i−1 + R2

i−1 C2
i−3 + C3

i−3 C0
i−2 + C(ADD)0 R3

i−1 + R0
i

9 R1
i−1 + R2

i−1 R3
i−1 + R0

i

Figure 11.1: Communication details between the ALU64 and the ALU256 for a multiplication, we
assume here that ARG0,256 = A = 2192 · A3 + 2128 · A2 + 264A1 + A0 and ARG1,256 = B = 2192 ·B3 +
2128 ·B2+264B1+B0. We also note R := OUT, C := CARRY_RES, and C(ADD)0 = C2

i−2+C3
i−2. Here

the final result, at the last step, is given by OUThigh = 264 ·R1
i +R3

i−3 and OUTlow = 264 ·R1
i−4+R0

i−8.

Instructions treated

• ADD

• MUL

Trace columns

ALU DISPATCHER inclusion columns:

• Instruction

• ARGi,{high,low},256, i ∈ [0, 1]: Contains the ith, i ∈ [1, 2] input of the operation.

• OUT{high,low},256: Contains the result of the operation to be transmitted back to the ALU
DISPATCHER.

• OVERFLOW_FLAG: is set iff the result of the operation has overflown

• ALU �
256

ALU64 link columns:

• ALU �
k,64

, k ∈ [0, 3]

• ♦ADD_FLAGk,64, k ∈ [0, 3]

225

• ♦MUL_FLAGk,64, k ∈ [0, 3]

• ARGi, k, 64, i ∈ [0, 1], k ∈ [0, 3]: Contains the inputs to be transmitted to the ALU64.

• OUTk,64, k ∈ [0, 3]: Contains the 64 bits of the result of the operation.

• CARRY_RESk,64, k ∈ [0, 3]: Contains the bits of the carry of the result.

• STEP_FLAG0, STEP_FLAG1, STEP_FLAG2, STEP_FLAG3: Encodes the step number of opera-
tion.

Arithmetic instruction flags

• ♦ADD_FLAG256

• ♦MUL_FLAG256

Constraint set

1. ALU �
256: {

ALU �
256
0 = 0

ALU �
256
i+1 ∈ {ALU �

256
i , 1 + ALU �

256
i }

2. if ALU �
256
i = 0 : then the entire i-th row is null; in particular the first row is all zeros;

3. if ♦ADD_FLAG256=1 : addition

(a) if STEP_FLAG0
i=0 : first step

i. Initialize the inputs for the ALU64:
ARGj,low,256

i = 264 ∗ ARGj,1,64
i + ARGj,0,64

i , j ∈ [0, 1]

ARGj,high,256
i = 264 ∗ ARGj,3,64

i + ARGj,2,64
i , j ∈ [0, 1]

♦ADD_FLAGk,64 = 0,∀k ∈ [0, 3]
♦MUL_FLAGk,64 = 1,∀k ∈ [0, 3]

ii. Set the step flag for the next operation

STEP_FLAGi+1 = 1

iii. Keep the ALU �
256 constant

ALU �
256
i+1 = ALU �

256
i

iv. Update the ALU �
i,64

, i ∈ [0, 3]
ALU �

0,64
i = ALU �

3,64
i−1 + 1

ALU �
1,64
i = ALU �

0,64
i + 1

ALU �
2,64
i = ALU �

1,64
i + 1

ALU �
3,64
i = ALU �

2,64
i + 1

(b) elseif STEP_FLAG0
i=1 : second step

226

i. Register0: 
ARG0,0,64

i = OUT1,64
i−1

ARG1,0,64
i = CARRY_RES0,64

i−1

♦ADD_FLAG0,64
i = 1

♦MUL_FLAG0,64
i = 0

ii. Register1: 
ARG0,1,64

i = OUT2,64
i−1

ARG1,1,64
i = CARRY_RES1,64

i−1 + CARRY_RES0,64
i

♦ADD_FLAG1,64
i = 1

♦MUL_FLAG1,64
i = 0

iii. Register2: 
ARG0,2,64

i = OUT3,64
i−1

ARG1,2,64
i = CARRY_RES2,64

i−1 + CARRY_RES1,64
i

♦ADD_FLAG2,64
i = 1

♦MUL_FLAG2,64
i = 0

iv. Set the result values {
OUThigh,256

i = 264 ∗ OUT2,64
i +Res1,64i

OUTlow,256
i = 264 ∗ OUT0,64

i +Res0,64i−1

v. if CARRY_RES2,64
i +CARRY_RES3,64

i−1=0: Do not set the overflow flag

OVERFLOW_FLAGi = 0

vi. elseif CARRY_RES2,64
i +CARRY_RES3,64

i−1 6 =0: Set the overflow flag

OVERFLOW_FLAGi = 1

vii. Unset the step flags for the next operation STEP_FLAG0
i+1 = 0

STEP_FLAG1
i+1 = 0

STEP_FLAG2
i+1 = 0

viii. Increase the ALU �
256

ALU �
256
i+1 = ALU �

256
i + 1

ix. Update the ALU �
i,64

, i ∈ [0, 3]
ALU �

0,64
i = ALU �

3,64
i−1 + 1

ALU �
1,64
i = ALU �

0,64
i + 1

ALU �
2,64
i = ALU �

1,64
i + 1

ALU �
3,64
i = ALU �

2,64
i

4. if ♦MUL_FLAG256

i
=1 : multiplication

(a) if STEP_FLAG0
i=0 AND STEP_FLAG1

i=0 AND STEP_FLAG2
i=0 AND STEP_FLAG3

i=0:
first step - compute the extreme terms

227

i. Input values for the ALU64
ARGj,low,256

i = 264 ∗ ARGj,1,64
i + ARGj,0,64

i , j ∈ [0, 1]

ARGj,high,256
i = 264 ∗ ARGj,3,64

i + ARGj,2,64
i , j ∈ [0, 1]

♦ADD_FLAGk,64 = 0,∀k ∈ [0, 3]
♦MUL_FLAGk,64 = 1,∀k ∈ [0, 3]

ii. Update the Update the ALU �
i,64

, i ∈ [0, 3]
ALU �

0,64
i = ALU �

3,64
i−1 + 1

ALU �
1,64
i = ALU �

0,64
i + 1

ALU �
2,64
i = ALU �

1,64
i + 1

ALU �
3,64
i = ALU �

2,64
i + 1

iii. Keep the ALU �
256 constant

ALU �
256
i+1 = ALU �

256
i

iv. Set the next step flags  STEP_FLAG0
i+1 = 1

STEP_FLAG1
i+1 = 0

STEP_FLAG2
i+1 = 0

(b) if STEP_FLAG0
i=1 AND STEP_FLAG1

i=0 AND STEP_FLAG2
i=0 AND STEP_FLAG3

i=0
- second step
i. Register0: 

ARG0,0,64
i = ARG0,0,64

i−1

ARG1,0,64
i = ARG1,1,64

i−1

♦ADD_FLAG0,64
i = 0,

♦MUL_FLAG0,64
i = 1,

ii. Register1: 
ARG0,1,64

i = ARG0,0,64
i−1

ARG1,1,64
i = ARG1,1,64

i−1

♦ADD_FLAG1,64
i = 0,

♦MUL_FLAG1,64
i = 1,

iii. Register2: 
ARG0,2,64

i = ARG0,1,64
i−1

ARG1,2,64
i = ARG1,0,64

i−1

♦ADD_FLAG2,64
i = 0,

♦MUL_FLAG2,64
i = 1,

iv. Register0: 
ARG0,3,64

i = ARG0,0,64
i−1

ARG1,3,64
i = ARG1,2,64

i−1

♦ADD_FLAG3,64
i = 0,

♦MUL_FLAG3,64
i = 1,

228

v. Set the next step flags  STEP_FLAG0
i+1 = 0

STEP_FLAG1
i+1 = 1

STEP_FLAG2
i+1 = 0

vi. Same constraints as 3(a)iv and 3(a)iii
(c) if STEP_FLAG0

i=0AND STEP_FLAG1
i=1AND STEP_FLAG2

i=0AND STEP_FLAG3
i=0-

third step
i. Register0: 

ARG0,0,64
i = ARG0,1,64

i−2

ARG1,0,64
i = ARG1,1,64

i−2

♦ADD_FLAG0,64
i = 0,

♦MUL_FLAG0,64
i = 1,

ii. Register1: 
ARG0,1,64

i = ARG0,2,64
i−2

ARG1,1,64
i = ARG1,0,64

i−2

♦ADD_FLAG1,64
i = 0,

♦MUL_FLAG1,64
i = 1,

iii. Register2: 
ARG0,2,64

i = ARG0,0,64
i−2

ARG1,2,64
i = ARG1,3,64

i−2

♦ADD_FLAG2,64
i = 0,

♦MUL_FLAG2,64
i = 1,

iv. Register3: 
ARG0,3,64

i = ARG0,1,64
i−2

ARG1,3,64
i = ARG1,2,64

i−2

♦ADD_FLAG3,64
i = 0,

♦MUL_FLAG3,64
i = 1,

v. Set the next step flags  STEP_FLAG0
i+1 = 1

STEP_FLAG1
i+1 = 1

STEP_FLAG2
i+1 = 0

vi. Same constraints as 3(a)iv and 3(a)iii
(d) if STEP_FLAG0

i=1 AND STEP_FLAG1
i=1 AND STEP_FLAG2

i=0 AND STEP_FLAG3
i=0:

fourth step
i. Register0: 

ARG0,0,64
i = ARG0,2,64

i−3

ARG1,0,64
i = ARG1,1,64

i−3

♦ADD_FLAG0,64
i = 0,

♦MUL_FLAG0,64
i = 1,

229

ii. Register1: 
ARG0,1,64

i = ARG0,3,64
i−3

ARG1,1,64
i = ARG1,0,64

i−3

♦ADD_FLAG1,64
i = 0,

♦MUL_FLAG1,64
i = 1,

iii. Register2: 
ARG0,2,64

i = ARG0,1,64
i−3

ARG1,2,64
i = ARG1,3,64

i−3

♦ADD_FLAG2,64
i = 0,

♦MUL_FLAG2,64
i = 1,

iv. Register3: 
ARG0,3,64

i = ARG0,2,64
i−3

ARG1,3,64
i = ARG1,2,64

i−3

♦ADD_FLAG3,64
i = 0,

♦MUL_FLAG3,64
i = 1,

v. Set the next step flags  STEP_FLAG0
i+1 = 0

STEP_FLAG1
i+1 = 0

STEP_FLAG2
i+1 = 1

vi. Same constraints as 3(a)iv and 3(a)iii
(e) if STEP_FLAG0

i=0 AND STEP_FLAG1
i=0 AND STEP_FLAG2

i=1 AND STEP_FLAG3
i=0:

fifth step
i. Register0: 

ARG0,0,64
i = ARG0,3,64

i−4

ARG1,0,64
i = ARG1,1,64

i−4

♦ADD_FLAG0,64
i = 0,

♦MUL_FLAG0,64
i = 1,

ii. Register1: 
ARG0,1,64

i = ARG0,2,64
i−4

ARG1,1,64
i = ARG1,3,64

i−4

♦ADD_FLAG1,64
i = 0,

♦MUL_FLAG1,64
i = 1,

iii. Register2: 
ARG0,2,64

i = ARG0,3,64
i−4

ARG1,2,64
i = ARG1,2,64

i−4

♦ADD_FLAG2,64
i = 0,

♦MUL_FLAG2,64
i = 1,

230

iv. Register3: 
ARG0,3,64

i = ARG0,3,64
i−4

ARG1,3,64
i = ARG1,3,64

i−4

♦ADD_FLAG3,64
i = 0,

♦MUL_FLAG3,64
i = 1,

v. Set the next step flags  STEP_FLAG0
i+1 = 1

STEP_FLAG1
i+1 = 0

STEP_FLAG2
i+1 = 1

vi. Same constraints as 3(a)iv and 3(a)iii
(f) if STEP_FLAG0

i=1 AND STEP_FLAG1
i=0 AND STEP_FLAG2

i=1 AND STEP_FLAG3
i=0:

sixth step
i. Register0: 

ARG0, 0, 64i = OUT1,64
i−4

ARG1,0,64
i = OUT0,64

i−4

♦ADD_FLAG0,64
i = 1,

♦MUL_FLAG0,64
i = 0,

ii. Register1: 
ARG0,1,64

i = OUT2,64
i−4

ARG1,1,64
i = OUT0,64

i

♦ADD_FLAG1,64
i = 1,

♦MUL_FLAG1,64
i = 0,

iii. Register2: 
ARG0,2,64

i = CARRY_RES1,64
i−4

ARG1,2,64
i = CARRY_RES2,64

i−4

♦ADD_FLAG2,64
i = 1,

♦MUL_FLAG2,64
i = 0,

iv. Register3: 
ARG0,3,64

i = OUT3,64
i−4

ARG1,3,64
i = OUT0,64

i3

♦ADD_FLAG3,64
i = 1,

♦MUL_FLAG3,64
i = 0,

v. Set the next step flags  STEP_FLAG0
i+1 = 0

STEP_FLAG1
i+1 = 1

STEP_FLAG2
i+1 = 1

vi. Same constraints as 3(a)iv and 3(a)iii
(g) if STEP_FLAG0

i=0 AND STEP_FLAG1
i=1 AND STEP_FLAG2

i=1 AND STEP_FLAG3
i=0:

seventh step

231

i. Register0: 
ARG0,0,64

i = OUT1,64
i−4

ARG1,0,64
i = OUT2,64

i−1

♦ADD_FLAG0,64
i = 1,

♦MUL_FLAG0,64
i = 0,

ii. Register1: 
ARG0,1,64

i = CARRY_RES0,64
i−1

ARG1,1,64
i = CARRY_RES1,64

i−1

♦ADD_FLAG1,64
i = 1,

♦MUL_FLAG1,64
i = 0,

iii. Register2: 
ARG0,2,64

i = OUT3,64
i−1

ARG1,2,64
i = OUT0,64

i

♦ADD_FLAG2,64
i = 1,

♦MUL_FLAG2,64
i = 0,

iv. Register3: 
ARG0,3,64

i = OUT1,64
i

ARG1,3,64
i = OUT2,64

i

♦ADD_FLAG3,64
i = 1,

♦MUL_FLAG3,64
i = 0,

v. Set the next step flags  STEP_FLAG0
i+1 = 1

STEP_FLAG1
i+1 = 1

STEP_FLAG2
i+1 = 1

vi. Same constraints as 3(a)iv and 3(a)iii
(h) if STEP_FLAG0

i=1 AND STEP_FLAG1
i=1 AND STEP_FLAG2

i=1 AND STEP_FLAG3
i=0:

eight step
i. Register0: 

ARG0,0,64
i = CARRY_RES3,64

i−6

ARG1,0,64
i = CARRY_RES0,64

i−5

♦ADD_FLAG0,64
i = 1,

♦MUL_FLAG0,64
i = 0,

ii. Register1: 
ARG0,1,64

i = OUT2,64
i−5

ARG1,1,64
i = CARRY_RES1,64

i−5

♦ADD_FLAG1,64
i = 1,

♦MUL_FLAG1,64
i = 0,

232

iii. Register2: 
ARG0,2,64

i = OUT3,64
i−5

ARG1,2,64
i = OUT0,64

i−4

♦ADD_FLAG2,64
i = 1,

♦MUL_FLAG2,64
i = 0,

iv. Register3: 
ARG0,3,64

i = OUT1,64
i−4

ARG1,3,64
i = OUT0,64

i

♦ADD_FLAG3,64
i = 1,

♦MUL_FLAG3,64
i = 0,

v. Set the next step flags  STEP_FLAG0
i+1 = 0

STEP_FLAG1
i+1 = 0

STEP_FLAG2
i+1 = 0

vi. Same constraints as 3(a)iv and 3(a)iii
(i) if STEP_FLAG0

i=0 AND STEP_FLAG1
i=0 AND STEP_FLAG2

i=0 AND STEP_FLAG3
i=1:

ninth step
i. Register0: 

ARG0,0,64
i = OUT1,64

i−1

ARG1,0,64
i = OUT2,64

i−1

♦ADD_FLAG0,64
i = 1,

♦MUL_FLAG0,64
i = 0,

ii. Register1: 
ARG0,1,64

i = CARRY_RES2,64
i−3

ARG1,1,64
i = CARRY_RES3,64

i−3

♦ADD_FLAG1,64
i = 1,

♦MUL_FLAG1,64
i = 0,

iii. Register2: 
ARG0,2,64

i = CARRY_RES0,64
i−2

ARG1,2,64
i = CARRY_RES2,64

i−2 + CARRY_RES3,64
i−2

♦ADD_FLAG2,64
i = 1,

♦MUL_FLAG2,64
i = 0,

iv. Register3: 
ARG0,3,64

i = OUT3,64
i−1

ARG1,3,64
i = OUT0,64

i

♦ADD_FLAG3,64
i = 1,

♦MUL_FLAG3,64
i = 0,

v. Set the next step flags  STEP_FLAG0
i+1 = 1

STEP_FLAG1
i+1 = 0

STEP_FLAG2
i+1 = 0

233

vi. Same constraints as 3(a)iv and 3(a)iii
(j) if STEP_FLAG0

i=1 AND STEP_FLAG1
i=0 AND STEP_FLAG2

i=0 AND STEP_FLAG3
i=1:

tenth step
i. Register0: 

ARG0,0,64
i = OUT1,64

i−1

ARG1,0,64
i = OUT2,64

i−1

♦ADD_FLAG0,64
i = 1,

♦MUL_FLAG0,64
i = 0,

ii. Register1: 
ARG0,1,64

i = OUT3,64
i−1

ARG1,1,64
i = OUT0,64

i

♦ADD_FLAG1,64
i = 1,

♦MUL_FLAG1,64
i = 0,

iii. Set the new stamps for the ALU64:
ALU �

64,0
i = ALU �

64,3
i−1 + 1

ALU �
64,1
i = ALU �

64,0
i + 1

ALU �
64,2
i = ALU �

64,0
i

ALU �
64,3
i = ALU �

64,0
i

iv. Set the result values:{
OUTlow,256

i = 264 ∗ OUT1,64
i−4 + OUT0,64

i−8

OUThigh,256
i = 264 ∗ OUT1,64

i + OUT3,64
i−3

v. Check if the result has overflown.

234

OVERFLOW_SUM =

CARRY_RES2,64
i−7 .IsNonzeroBinary()+

CARRY_RES3,64
i−7 .IsNonzeroBinary()+

OUT2,64
i−6 .IsNonzeroBinary()+

OUT3,64
i−6 .IsNonzeroBinary()+

CARRY_RES0,64
i−6 .IsNonzeroBinary()+

CARRY_RES1,64
i−6 .IsNonzeroBinary()+

CARRY_RES2,64
i−6 .IsNonzeroBinary()+

CARRY_RES3,64
i−6 .IsNonzeroBinary()+

OUT0,64
i−5 .IsNonzeroBinary()+

OUT1,64
i−5 .IsNonzeroBinary()+

OUT2,64
i−5 .IsNonzeroBinary()+

OUT3,64
i−5 .IsNonzeroBinary()+

CARRY_RES0,64
i−5 .IsNonzeroBinary()+

CARRY_RES1,64
i−5 .IsNonzeroBinary()+

CARRY_RES2,64
i−5 .IsNonzeroBinary()+

CARRY_RES3,64
i−5 .IsNonzeroBinary()+

CARRY_RES0,64
i−2 .IsNonzeroBinary()+

CARRY_RES1,64
i−2 .IsNonzeroBinary()+

CARRY_RES2,64
i−2 .IsNonzeroBinary()+

CARRY_RES3,64
i−2 .IsNonzeroBinary()+

CARRY_RES0,64
i−1 .IsNonzeroBinary()+

CARRY_RES1,64
i−1 .IsNonzeroBinary()+

CARRY_RES2,64
i−1 .IsNonzeroBinary()+

CARRY_RES3,64
i−1 .IsNonzeroBinary()+

CARRY_RES0,64
i .IsNonzeroBinary()+

CARRY_RES1,64
i .IsNonzeroBinary()+

.

vi. if OVERFLOW_SUM=0
OVERFLOW_FLAGi = 0

vii. elseif OVERFLOW_SUM 6 =0

OVERFLOW_FLAGi = 1

viii. Set the next step flags  STEP_FLAG0
i+1 = 0

STEP_FLAG1
i+1 = 0

STEP_FLAG2
i+1 = 0

11.3 ALU 64
11.3.1 ALU64
This submodule treats the operations transmitted by the ALU256 (MUL and ADD operations), computes
the associated result and carry, and performs range checks to ensure safe 64-bit arithmetic.

Trace columns

• ♦ADD_FLAG

• ♦MUL_FLAG

235

• ALU �
64

• Inputi, i ∈ {0, 1}

• OUT

• CARRY_RES

Constraint set

• ALU �
64: {

ALU �
64
0 = 0

ALU �
64
i+1 ∈ {ALU �

64
i , 1 + ALU �

64
i }

• if ALU �
64
i = 0 : then the entire i-th row is null; in particular the first row is all zeros;

• if ♦ADD_FLAGi = 1 : addition

– Compute the result and the carry:

ARG0
i + ARG1

i = OUTi + 264 · CARRY_RESi

• elseif ♦MUL_FLAGi = 1 : multiplication

– Compute the result and the carry:

ARG0
i · ARG1

i = OUTi + 264 · CARRY_RESi

Range constraints

ARGi, i ∈ {0, 1}, OUT and CARRY_RES should all belong to the range [0, 264[, ie they should be
composed of at most 8 bytes or 4 double-bytes.

236

Chapter 12

EXP dynamic gas

12.1 Exponent module
12.1.1 Introduction
The exponent byte size module is a tiny module which carries out a computation required to
compute the dynamic gas cost of EXP instructions. It doesn’t carry out EXP instructions, that is the
perview of the ALU module, rather it computes the size in bytes of the exponent which is required for
establishing the dynamic gas cost of EXP.

12.1.2 Columns
1. 〈EXP � 〉: imported column containing the exponentiation time stamp;

The hub contains an EXP � column: it’s a simple stamp colum that whose value increases by 1 every
time the hub encounters an EXP instruction.

2. 〈EXPNT hi〉 and 〈EXPNT lo〉: imported columns containing the high and low parts of the exponent;

3. 〈SIZE〉: imported column containing the size in bytes of the exponent;

Given the stack pattern of the EXP instruction, 〈EXPNT hi〉 and 〈EXPNT lo〉 columns are imports of the
(high and low part of the) third stack item’s value 3VAL hi and 3VAL lo. The imported 〈SIZE〉 column
is justified in the present module. It will be made to contain the size in bytes size of the exponent.
Recall the convention for the size in bytes for an (EVM word) exponent e ≡ (e hi, e lo):

if e hi 6= 0 then size = 1 + blog256(e hi)c+ 16

if
(
e hi = 0 and e lo 6= 0

)
then size = 1 + blog256(e lo)c

if
(
e hi = 0 and e lo = 0

)
then size = 0

4. DO_BYTE_DECOMPOSITION: binary column; equals 0 if and only if the exponent is zero;
abbreviate to DOBD;

5. BYTE_1: byte column;

6. ACC_1: “accumulator” column; accumulates the bytes from BYTE_1;

7. PLATEAU_BIT: binary “pivot bit” column; abbreviated to PBIT;

8. COUNTER: counter colum; either hovers around zero or counts from 0 to 15; abbreviated to CT;

237

12.2 General constraints
12.2.1 The DOBD flag
We set the DOBD flag: DOBD = 1 ⇐⇒ the exponent is nonzero, i.e.:

if
(
〈EXPNT hi〉i = 0 and 〈EXPNT lo〉i = 0

)
then DOBDi = 0

if 〈EXPNT hi〉i 6= 0 then DOBDi = 1

if 〈EXPNT lo〉i 6= 0 then DOBDi = 1

Note that the hearbeat imposes in particular that if 〈EXP � 〉i = 0 the whole row is zero, in particular
the exponent is zero.

12.2.2 Heartbeat
The hearbeat of the present module is simple: every call to it occupies 16 lines except if the exponent
is 0 i.e. if DOBDi = 0.

1. 〈EXP � 〉0 = 0;

2. 〈EXP � 〉 is nondecreasing in the sense that 〈EXP � 〉i+1 ∈ {〈EXP � 〉i, 1 + 〈EXP � 〉i};

3. if 〈EXP � 〉i = 0 then (DOBDi = 0 and CTi = 0);

4. if 〈EXP � 〉i+1 6= 〈EXP � 〉i then CTi+1 = 0;

5. if 〈EXP � 〉i 6= 0 then

(a) if DOBDi = 0 then 〈EXP � 〉i+1 = 1 + 〈EXP � 〉i
(b) if DOBDi = 1 then

i. if CTi 6= 15 then {
CTi+1 = 1 + CTi

DOBDi+1 = 1

ii. if CTi = 15 then 〈EXP � 〉i+1 = 1 + 〈EXP � 〉i
6. if DOBDN = 1 then CTN = 15.

12.2.3 Byte decomposition
We impose byte decompositions:

1. if DOBDi = 0 then BYTE_1i = 0;

2. if CTi = 0 then ACC_1i = BYTE_1i;

3. if CTi 6= 0 then ACC_1i = 256 · ACC_1i−1 + BYTE_1i;

We further impose that BYTE_1 contain bytes.

12.2.4 Target constraints
We fix the target of the accumulator column:

1. if CTi = 15 then {
if 〈EXPNT hi〉i 6= 0 then ACC_1i = 〈EXPNT hi〉i
if 〈EXPNT hi〉i = 0 then ACC_1i = 〈EXPNT lo〉i

Note that CTi = 15 can only happen if DOBDi = 1 (and thus 〈EXP � 〉i 6= 0.)

238

12.2.5 PLATEAU_BIT constraints
The plateau bit PBIT is a binary colum. It only plays a role if the exponent is nonzero. Its purpose
is to switch from 0 to 1 at the precise moment the trace encounters the leading byte of the exponent.
Here are its constraints:

1. PBIT is a binary column i.e. PBITi · (1− PBITi) = 0;

2. if DOBDi = 0 then PBITi = 0;

3. if DOBDi = 1 then

(a) if CTi 6= 15 then PBITi+1 ∈ {PBITi, 1 + PBITi} i.e. PBITi is nondecreasing within a
counter cycle;

(b) if CTi = 0 then {
if BYTE_1i = 0 then PBITi = 0
if BYTE_1i 6= 0 then PBITi = 1

(c) if CTi 6= 15 and PBITi = 0 then{
if BYTE_1i+1 = 0 then PBITi+1 = 0
if BYTE_1i+1 6= 0 then PBITi+1 = 1

12.2.6 〈SIZE〉 constraints
We constrain the 〈SIZE〉 column.

1. if DOBDi = 0 then 〈SIZE〉i = 0

2. if DOBDi = 1 then

(a) if CTi = 0 and PBITi = 1 then{
if 〈EXPNT hi〉i 6= 0 then 〈SIZE〉i = 32− CTi

if 〈EXPNT hi〉i = 0 then 〈SIZE〉i = 16− CTi

Note: by hypothesis CTi = 0 so we may just as well write “〈SIZE〉i = 32” or “〈SIZE〉i = 16”
depending on whether 〈EXPNT hi〉i 6= 0 or not;

(b) if
(

CTi 6= 15 and PBITi = 0 and PBITi+1 = 1
)

then

{
if 〈EXPNT hi〉i 6= 0 then 〈SIZE〉i = 32− CTi+1

if 〈EXPNT hi〉i = 0 then 〈SIZE〉i = 16− CTi+1

239

Chapter 13

Address Shaving

13.1 Address shaving module
13.1.1 Introduction
The address shaving module is a tiny and very simple module whose sole purpose is to reduce
mod 2160 stack arguments that ought to be interpreted as addresses. It is triggered by the following
instructions:

1. BALANCE

2. EXTCODESIZE

3. EXTCODECOPY

4. EXTCODEHASH

5. CALL

6. CALLCODE

7. STATICCALL

8. DELEGATECALL

9. SELFDESTRUCT

These are precisely the instructions that raise the ADDRESS_SHAVING_FLAG in the hub.

13.1.2 Columns
1. 〈SHAVE�〉: imported stamp column;

The address shaving module is activated every time an instruction which requires address shaving is
loaded into the hub. Every such call increases the ADDRESS_SHAVING_STAMP (i.e. SHAVE�) in
the hub by 1.

2. 〈ADDR hi〉: imported column containing the high part of the appropriate stack argument con-
taining the address argument of the instruction at hand;

3. 〈LOW4〉: imported column containing the shaved version of the high part of the address argue-
ment;

4. CT: counter column: counts continuously from 0 to 15 and resets;

5. BYTE_1: byte column;

6. ACC_1 and ACC_2: accumulator column; accumulates the bytes from BYTE_1;

7. PBIT: binary colum that switches from 0 to 1 when CTi = 12

240

13.2 Constraints
13.2.1 Heartbeat
The heartbeat of the address shaving module is very simple: the CT column counts from 0 to 15 unless
the 〈SHAVE�〉 is zero, in which case it hovers at 0.

1. 〈SHAVE�〉0 = 0

2. 〈SHAVE�〉 is nondecreasing in the sense that 〈SHAVE�〉i+1 ∈ {〈SHAVE�〉i, 1 + 〈SHAVE�〉i}

3. if 〈SHAVE�〉i = 0 then CTi = 0

4. if 〈SHAVE�〉i+1 6= 〈SHAVE�〉i then CTi+1 = 0

5. if 〈SHAVE�〉i 6= 0 then

(a) if CTi 6= 15 then CTi+1 = 1 + CTi

(b) if CTi = 15 then 〈SHAVE�〉i+1 = 1 + 〈SHAVE�〉i
6. if 〈SHAVE�〉N 6= 0 then CTN = 15

13.2.2 PBIT contraints
The PBIT column is a binary colum that hovers around zero until CT reaches the value 12 at which
point it switches to 1. The associated constraints are as follows:

1. PBIT is binary;

2. if CTi = 0 then PBITi = 0;

3. if CTi 6= 0 then PBITi ∈ {PBITi−1, 1 + PBITi−1};

4. if CTi = 12 then
(
PBITi−1 = 0 and PBITi = 1

)
;

13.2.3 Byte decomposition
We impose the following byte decomposition:

1. if 〈SHAVE�〉i = 0 then BYTE_1i = 0;

2. if CTi = 0 then {
ACC_1i = BYTE_1i
ACC_2i = 0

;

3. if CTi 6= 0 then ACC_1i = 256 · ACC_1i−1 + BYTE_1i{
ACC_1i = 256 · ACC_1i−1 + BYTE_1i
ACC_2i = 256 · ACC_1i−1 + PBITi · BYTE_1i

;
We further impose that BYTE_1 contain bytes.

13.2.4 Target constraints
We fix the target of the accumulator column:

1. if CTi = 15 then {
〈ADDR hi〉i = ACC_1i
〈LOW4〉i = ACC_2i

241

Bibliography

[1] Vitalik Buterin. An Incomplete Guide to Rollups. 2021. url: https://vitalik.ca/general/2021/01/
05/rollup.html.

[2] DeGate Team. An article to understand zkEVM, the key to Ethereum scaling. 2021. url: https://
medium.com/degate/an-article-to-understand-zkevm-the-key-to-ethereum-scaling-ff0d83c417cc.

[3] ZK-sync official website. url: https://zksync.io/.
[4] Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo – a Turing-complete STARK-friendly

CPU architecture. Cryptology ePrint Archive, Report 2021/1063. https://ia.cr/2021/1063. 2021.
[5] Hermez official website. url: https://hermez.io/.
[6] Scroll tech github repository. url: https://github.com/scroll-tech/.
[7] DR. Gavin Wood. “Ethereum : A secure decentralised generalised transaction ledger”. In: (2022).

242

https://vitalik.ca/general/2021/01/05/rollup.html
https://vitalik.ca/general/2021/01/05/rollup.html
https://medium.com/degate/an-article-to-understand-zkevm-the-key-to-ethereum-scaling-ff0d83c417cc
https://medium.com/degate/an-article-to-understand-zkevm-the-key-to-ethereum-scaling-ff0d83c417cc
https://zksync.io/
https://ia.cr/2021/1063
https://hermez.io/
https://github.com/scroll-tech/

	Purpose
	Context and results
	Conventions
	Organization
	Suggestions for reading this document
	Hub
	Columns
	Conventions
	Column descriptions

	Stack
	Heartbeat
	Counter constancy
	Height range
	Zero padding
	Stack exceptions
	Call stack depth exception

	Stack patterns
	Purpose
	Expected outcome
	Empty stack item
	Stack exception pattern

	One line instruction stack patterns
	Disclaimer
	(0,0)-pattern
	(0,1) and (1,0) patterns
	(1,1) and (2,0) patterns
	(2,1) and (3,1) patterns
	DUP_X-pattern
	SWAP_X-pattern
	RETURN/REVERT pattern
	Copy pattern

	Two line instruction stack patterns patterns
	Disclaimer
	LOG_X pattern
	Call pattern
	Create pattern

	Constraints
	Stack consistency
	Program counter, PUSHes and JUMPs)
	Miscellaneous flags
	Gas

	Workflow
	Module selectors

	MMU
	Column descriptions
	Offset preprocessing
	Absolute and relative offsets
	RAM constancy
	Columns established during precomputation
	Binary, ternary, nibble and byte columns
	Heartbeat
	Byte decomposition constraints
	Data organization

	Combinatorics of overlapping intervals
	Purpose
	Data

	Constraints
	Parametrized instruction decoding, preprocessing and constraints
	Setting the FAST flag
	Type 1
	Type 2
	Type 3
	Type 4
	Type 4 when TERN = 0
	Type 4 when TERN = 1
	Type 4 when TERN = 2
	Type 5

	MMIO
	Outline of the RAM arithmetization
	RAM instructions
	Column descriptions

	Specialized constraints
	Binary constraints
	Binary plateau constraints
	Power constraints
	Byte decomposition constraints
	Suffix extraction
	Prefix extraction
	Chunk extraction

	Module consraints
	Heartbeat
	Byte decomposition constraints
	Bytehood constraints
	Counter constancy

	Limb transplants
	Purpose
	RAM to RAM
	Exodata to RAM
	Exodata and RAM agree
	Killing RAM slots
	RAM to stack
	Stack to RAM
	Transaction call data to RAM

	Surgical patterns
	Purpose
	Single byte swap
	Excision
	`3́9`42`"̇613A``45`47`"603A[11Padded]
	`3́9`42`"̇613A``45`47`"603A[21Padded]
	`3́9`42`"̇613A``45`47`"603A[1Full2]
	`3́9`42`"̇613A``45`47`"603A[21Full]
	`3́9`42`"̇613A``45`47`"603A[1Partial1]
	`3́9`42`"̇613A``45`47`"603A[1Partial2]
	`3́9`42`"̇613A``45`47`"603A[2Full3]
	`3́9`42`"̇613A``45`47`"603A[32Full]

	Limb surgery
	Data sources and targets
	Which opcodes require what surgeries
	RAM to RAM
	Exogenous data to RAM
	RAM to exogenous data
	Stack to RAM
	RAM to stack: aligned offsets
	RAM to stack: non-aligned offsets

	Consistency constraints
	Call stack consistency
	Concatenated columns and order
	Memory consistency constraints

	ROM
	The ROM module
	Introduction
	ROM specific terms
	Trace columns
	Constraints
	Constraints related to PUSH instructions
	Contract Address comparisons

	Out of bounds
	Columns
	Purpose
	Column descriptions

	Heartbeat
	Constraints
	Bytehood, byte decompositions, binary and ternary checks
	CALLDATALOAD specific instructions
	RETURNDATACOPY specific instructions
	JUMP / JUMPI specific instructions
	RETURN specific instructions

	Memory expansion
	Memory expansion module
	Introduction
	Columns
	Offset bounds

	General constraints
	Heartbeat
	Counter constancy
	ROOB flag
	NOOP flag
	Byte decompositions

	Specialized constraints
	Standing hypothesis
	Max offsets
	Offsets are out of bounds
	Offsets are in bounds

	Consistency constraints

	Gas
	Purpose
	Purpose
	Triggers

	Columns
	Column descriptions

	Constraints
	Heartbeat
	Constancy constraints
	Byte decompositions
	The LARGE_BYTE_DECOMPOSITION_FLAG
	Target constraints

	Storage
	Storage module
	Storage instructions
	Column descriptions

	Constraints
	Heartbeat
	Prewarmed storage keys
	Instruction related constraints

	Consistency
	Batch level consistency
	Transaction level consistency
	Gas constraints

	Word comparison
	Word comparison module
	Introduction
	Columns

	Constraints
	Heartbeat
	Counter constancy constraints
	Byte decompositions, bytehood and binaryness
	OLI constraints
	Target constraints
	Result constraints

	Binary
	Constraint set for the Binary module.
	Binary Instructions
	Columns
	Lookup tables and Plookup constraints
	Technical constraints
	Shift-instruction constraints
	Pivot-instruction constraints

	ALU
	ALU Dispatcher
	ALU DISPATCHER

	ALU 264
	ALU256

	ALU 64
	ALU64

	EXP dynamic gas
	Exponent module
	Introduction
	Columns

	General constraints
	The DOBD flag
	Heartbeat
	Byte decomposition
	Target constraints
	PLATEAU_BIT constraints
	SIZE constraints

	Address Shaving
	Address shaving module
	Introduction
	Columns

	Constraints
	Heartbeat
	PBIT contraints
	Byte decomposition
	Target constraints

