
1

Boson Consensus: A Scalable Blockchain

Consensus Algorithm

Qi Zhou

QuarkChain Foundation LTD., Singapore, Singapore

qizhou@quarkchain.org

v0.1.0

Abstract

One of the major challenges for blockchain networks is to achieve scalability while maintaining

security and decentralization. Among the existing solutions to enhance scalability, blockchain sharding

is one of the promising solutions by running multiple chains concurrently. However, the major issue that

blockchain sharding faces is the vulnerability to a single-shard attack, where the security guarantee of a

shard can be much lower than a single chain. In this paper, we introduce Boson consensus algorithm -

a blockchain sharding consensus algorithm that scales the network dramatically while keeping security

guarantee. We discuss how Boson consensus increases blockchain capacity by increasing the number of

shards and enables both efficient in-shard and cross-shard transactions. Moreover, to ensure security, we

demonstrate that all shards could share the same security guarantee as the root chain, whose security

level is much stronger than any single shard in multi-chain networks. Finally, we illustrate the first

realization of Boson consensus - QuarkChain, and show that a community-run testnet could achieve

more than 55, 000 transactions per second.

Index Terms

Consensus, proof of work, proof of stake, sharding, cryptocurrency, scalability

I. INTRODUCTION

Since the debut of Bitcoin [1], Bitcoin and blockchain technology have received great attentions

due to the merits such as decentralization, immunity, transparency, etc. However, one major

drawback of the Bitcoin network is the low capacity in terms of transactions per second (TPS),

where Bitcoin offers about 6 to 7 TPS. Compared to centralized systems such as VISA or Alipay,



2

which could achieve more than tens of thousands of TPS, the low TPS of Bitcoin results in high

transaction fee and thus greatly limits its wider applications.

The performance of Bitcoin network is mainly determined by two parameters - maximum block

size and block interval, where Bitcoin limits the block size to 1 megabytes (MB) and adjusts

the difficulty of its proof-of-work (PoW) consensus so that the expected block interval is 600

seconds. To improve the performance, several blockchain networks are proposed to optimize

the two parameters. Litecoin [2] decreases the block interval to 150 seconds and claims 4

times performance improvement. Bitcoin Cash [3] increases the block size limit to 32 MB and

thus claims 32 times performance improvement. However, decreasing the block interval and/or

increasing block size can significantly increase block stale rate [4]. As a result, a portion of the

hashpower of the network does not contribute to the canonical chain and is wasted, and then

the security of the network against double-spending attack, a.k.a, 51% attack, is weakened. To

alleviate the security issue of the wasted hashpower, Ethereum adopts greedy heaviest observed

subtree (GHOST) [5], [6] algorithm to collect the hashpower of the stale blocks and reduces its

block interval to about 15 seconds. To further reduce the block interval and improve performance,

delegated proof-of-stake (dPoS) consensus [7] is proposed to limit the network size and allows

only 10-30 block producers (BPs) in the network. Although the block interval can be decreased

to seconds or sub-seconds, dPoS is criticized to be prone to centralized due to the limited number

of block producers.

Another approach to scale blockchain networks is to run multiple blockchains simultaneously,

which is sometimes referred to as blockchain sharding. By increasing the number of chains

(or shards) running in parallel, the scalability of the network increases linearly. However, this

approach also faces several challenges. One challenge is that a single shard is more vulnerable

to attack, namely, single-shard attack. For example, suppose there are N shards in the network

and all shards run PoW with the same hash algorithm. Then there exists a shard with at most

1/N hashpower. As a result, an attacker could perform a double-spending attack with only

1/2N hashpower, which is much lower than that of a single-chain network. Besides the security

concern, another challenge is to enable cross-shard interoperability efficiently and securely.

In this paper, we present Boson consensus algorithm - a novel approach to scale blockchain

network dramatically. Boson consensus algorithm employs blockchain sharding so that the

network capacity increases as the number of shard chains increases. In addition, to counter

single-shard attack, Boson consensus algorithm runs a root chain that describes the canonical



3

chain of each shard and is designed to have strong security guarantee, e.g., high hashpower of

the network if the root chain runs PoW consensus. By exploiting a root-chain-first fork-choice

rule on each shard, we prove that the security of the double-spending attack on shard chains can

be efficiently guarded by the root chain, and thus the double-spending attack on a shard becomes

much harder than the conventional blockchain sharding design. In addition, we illustrate how to

add a new shard dynamically in a Boson network and how to perform cross-shard transactions

efficiently and securely.

Besides great scalability, Boson consensus algorithm also allows different shards running

different combinations of consensus, ledger, transaction model, and even token economics. This

gives Boson network a great flexibility and is able to employ different techniques of existing

blockchains such as Bitcoin’s unspent transaction output (UTXO) and scripting transaction

model, Ethereum account-based model and virtual machine (EVM), privacy-preserve functions

in a Boson network. Furthermore, these shard chains can easily inter-operate, e.g., an owner of

a UTXO can call the smart contract on another shard, or a balance in an EVM-like shard could

perform a confidential transaction on a shard with privacy-preserve functions. With the ability

to add new shards, the network can be further upgraded to adopt emerging blockchain innovates

such as new virtual machines, ledger models, etc.

The rest of papers are organized as follows. Section II introduces the system model of

conventional blockchain network. Section III proposes Boson consensus algorithm. Section IV

illustrates the first realization of Boson Consensus - QuarkChain. Section V concludes the paper.

Notations:



4

Notation Description

B = [B0, ..., Bl] A list of chained blocks

C = {(Ni, Nj)} Connectivity set of the network

C Consensus algorithm

d(·) Difficulty of a block

h(·) Cryptographic hash function

L Ledger of Boson network

N A blockchain network

N = {Ni} The set of nodes in the network

P P2P network protocol

S State of a ledger

T (·, ·) State transfer function

V (B) Validity function

W (B) Simplified validity function

TABLE I

NOTATIONS USED IN THE PAPER

II. SYSTEM MODEL OF CONVENTIONAL BLOCKCHAIN NETWORK

Consider a blockchain network

N = (N , C,C, P ), (1)

where the nodes of the network N = {Ni} are inter-connected by a P2P protocol P , C =

{(Ni, Nj)} is the connectivity set for all pairs of nodes Ni and Nj that are connected in the

network, and C is the consensus algorithm. Each node Ni maintains a list of blocks

B(i) = [B
(i)
0 , B

(i)
1 , ..., B

(i)
l ], (2)

namely, a ledger, where B(i)
0 = B0 the genesis block that is known and fixed for all nodes, B(i)

j

is the block with index j, and the number of blocks in the ledger is l + 1.

The consensus C contains two components

C = (V (·), F (·, ·)) (3)

where V (·) is the validity function, which determines a ledger B is correct or not, and F (·, ·)

is the fork-choice rule function. Note that the consensus we defined here is in a general form,

which can describe most blockchain consensus algorithms such as proof of work (PoW), proof

of stake (PoS), delegate proof of stake (dPoS), etc.



5

To incentivize each node to operate the network, each block is associated with a block reward

assigned to the producer, and any node could produce a block as long as it is defined validly by

V (·). Once a node produces a block, it will immediately broadcast the block to its neighbors via

the P2P protocol P so that the block (and the producer’s reward) could be accepted by others.

Meanwhile, if another block is produced at the same height and results in different ledgers,

namely, forks, the network reaches an inconsistent state temporarily, and we need a fork-choice

rule F (·, ·) to determine which fork to survive. We will explain the details of the validity function

and fork-choice rule in the following subsections.

A. Validity Function

The validity function V (·) accepts a list of blocks as input and outputs the validity of the

blocks as

V (B) =

1, if B constitutes a valid ledger

0, otherwise.
(4)

A node will reject the blocks if V (B) = 0. In addition, by properly designing the blocks, we

could further simplify the validity function as follows.

• In a blockchain network, the validity function requires that the blocks in a ledger are chained

via hash pointers. This means that, for each block, it contains a field prev hash(Bi) that

returns the hash value of the previous block and a valid ledger B = [B0, B1, ..., Bl] must

satisfy

h(Bi−1) = prev hash(Bi),∀i > 0 (5)

where h(·) is a cryptographic hash function defined by V (·). Assuming the hash function

is collision-resistant, we could uniquely determine the history of a new block Bi, i.e.,

[B0, B1, ..., Bi−1] by looking up the previous blocks associated with the hash pointers from

the source of the new block (local or neighbor) recursively. In addition, given two blocks Bi

and Bi+n, we called them n-hash-linked, i.e., Bi+n
n−→ Bi, if and only if Bi, Bi+1, ..., Bi+n

are hash linked.

• The validity function only validates a list of blocks, which can be computationally expensive

over time if the list is long. In most cases, we only need to validate whether a new block

Bi is valid or not if the previous block is already validated. This can be done by using the



6

intermediate result of a ledger, namely, the state of the ledger with a state transfer function

T (·, ·):

S0 = T (∅, B0) (6)

Si = T (Si−1, Bi)

= T (T (Si−2, Bi−1), Bi)

= T (T (...T (T (∅, B0), B1)), ..., Bi−1), Bi), (7)

where Si is the state associated with block Bi, S0 is the genesis state, and we could redefine

the validity function as

V ([B0, B1, ..., Bi]) = W (Bi)

=


1, if W (Bi−1) = 1 and

Bi can be applied to Si−1;

0, otherwise.

(8)

where Bi−1 and Si−1 are uniquely determined by the hash pointer prev hash(Bi). This

allows a node to quickly determine a validity of a block by applying it to the previous state

instead of evaluating over all history of the block.

B. Fork-Choice Rule

The fork-choice rule function accepts two valid ledgers B(i) = [B
(i)
0 , B

(i)
1 , ...B

(i)
l ] and B(j) =

[B
(j)
0 , B

(j)
1 , ...B

(j)
m ], and outputs which one should be chosen as the ledger of the network:

F (B(i),B(j)) =


> 0, then B(i) should be chosen,

0, anyone could be chosen,

< 0, then B(j) should be chosen.

(9)

Note that in case of the fork-choice rule makes no preference (F (B(i),B(j)) = 0), the node

could choose any ledger, and a common practice is to choose the one that is firstly known to

the node.



7

In addition, to incentivitize the nodes to produce blocks, we assume the fork-choice rule must

have the following property

F (B + [B],B) > 0, (10)

F (B,B + [B]) < 0, (11)

where + is the list concatenation operator and block B is a valid block appended to the ledger

B.

C. Example with PoW-Based Blockchain Network

In this subsection, we illustrate our blockchain abstractions using PoW-based networks such as

Bitcoin and Ethereum as examples. In a PoW-based network, to produce a block, each producer

first constructs a template block, which is validly defined by W (·) in Eq. (8) except that the block

does not reach the associated difficulty. The difficulty is used to control the block produce rate

so that the expected block rate is about 15 minutes and 15 seconds for Bitcoin and Ethereum

networks, respectively. The difficulty of a block is adjusted for every 2016-block in Bitcoin

network or every block in Ethereum. Then the block producer starts to mine the block by

increasing a nonce field in the block until the hash of the block reaches the difficulty, i.e.,

W (Bi) =


1, if Bi is a valid template block and

hm(Bi)× d(Bi) < 2256,

0, otherwise.

(12)

where d(Bi) returns the difficulty of block Bi and hm(·) is the hash function for mining, which

is double SHA2 for Bitcoin and Ethash for Ethereum.

The fork-choice rule of the PoW-based network uses a term called “total difficulty”, which is

defined as

td(B) =
∑
∀i

d(Bi), (13)

and the fork-choice rule function becomes

F (B(i),B(j)) = td(B(i))− td(B(j)). (14)

Note that with total difficulty as the fork-choice rule, to maximize the mining efficiency, a block

producer will be expected to mine the block that could be appended to the ledger with the highest

total difficulty - otherwise, the miner will race with other block producers that are working on

the ledger with the highest total difficulty and may waste its hashpower.



8

1) Double-Spending Attack on PoW-Based Blockchain Network: A double-spending attack

aims to revert a block Bj of current ledger B = [B0, B1, ..., Bj−1, Bj, Bj+1, ..., Bl] by producing

a list of blocks [B′j, B
′
j+1, ..., B

′
l′ ], namely, the attacking fork, such that

1) The attack fork constitutes a valid ledger V (B′) = V ([B0, B1, ..., Bj−1, B
′
j, B

′
j+1...B

′
l′ ]) =

1; and

2) The attacking fork has higher total difficulty compared to the canonical one, i.e.,
∑

i≥j d(B′i) >∑
i≥j d(Bi).

Therefore, we will have a valid ledger B′ with a greater total difficulty than the current ledger

B, td(B′) > td(B). According to fork-choice rule in Eq. (14), the network will choose B′ and

thus the blocks Bj, Bj+1, ..., Bl will be reverted and transactions in the reverted blocks will be

rolled back. As a result, the spent crypto-currencies in the transactions of the reverted blocks

in B′j, B
′
j+1, ..., B

′
l′ can be spent again. In a PoW-based blockchain network, an attacker could

always create such attacking fork as long as the attacker has more than 51% of the hashpower

of the network.

III. BOSON CONSENSUS

A network running Boson consensus is a tuple

N = (N , C,C, P ), (15)

where the nodes of the network N = {Ni} are inter-connected by a peer-to-peer (P2P) protocol

P , C = {(Ni, Nj)} is the connectivity set for any pairs of nodes Ni and Nj that are connected

in the network. However, different from the existing blockchain networks, whose ledger is a list

of chained blocks, the ledger of a Boson network is

L = (Br,B0,B1, ...,BN−1) (16)

where Br = [Br,0, Br,1, ..., Br,lr ] is the list of blocks of the root chain, N is the number of shard

chains, and Bi = [Bi,0, Bi,1, ..., Bi,li ],∀0 ≤ i ≤ N − 1, is the list of shard chains. Since we have

N + 1 chains, each chain could have their own consensuses, i.e.,

Cr = (Vr(·), Fr(·, ·)), (17)

Ci = (Vi(·), Fi(·, ·)),∀0 ≤ i ≤ N − 1. (18)



9

In addition, the root block describes the canonical chain of each shard chain by including the

hash pointers or headers of the last shard block observed

Bi,oi(Br,j) = observedi(Br,j), (19)

where oi(Br,j) returns the highest index of the block of the ith shard chain included by root

block Br,j . In practice, this can be done by including the hash values of new shard blocks when

producing a root block. Given function oi(·), we define the validity function of a ledger as:

Definition 1 (Boson Consensus Validity Function). The validity function of a ledger generated

by Boson consensus is:

V (L) =



1, if Vi(Bi) = 1, ∀i ∈ {r, 0, ..., N − 1} and

oi(Br,j−1) ≤ oi(Br,j), ∀0 ≤ i ≤ N − 1, j ≥ 1 and

observedi(Br,j) ∈ Bi, ∀0 ≤ i ≤ N − 1, j ≥ 1

0, otherwise.

(20)

With the validity function defined in (20), we define the fork-choice rule of Boson network

as follows.

Definition 2 (Boson Consensus Fork-Choice Rule). Given two different ledgers L(j),L(k), the

fork-choice rule first compares the root chains of the ledgers:

F (L(j),L(k)) = Fr(B
(j)
r ,B(k)

r )

=


> 0, then L(j) should be chosen,

0, see the following cases,

< 0, then L(k) should be chosen.

(21)

If Fr(B
(j)
r ,B

(k)
r ) = 0, we have two possibilities.

• The root chains are not equal, i.e., B(j)
r 6= B

(k)
r . In this case, we have no preference on

which ledger, and a common practice chooses the ledger that is firstly known to the node.

• The root chains are equal, i.e., B(j)
r = B

(k)
r . This means that all the shard chains have

common ancestors observed by the root chain, and thus each shard could apply their per-

shard fork-choice rule

Fi(B
(j)
i ,B

(k)
i ),∀i ∈ {0, ..., N − 1}, (22)



10

where we denote B′i as the shard chain chosen

B′i =


B

(j)
i , if Fi(B

(j)
i ,B

(k)
i ) > 0

B
(k)
i , if Fi(B

(k)
i ,B

(j)
i ) > 0

B
(j)
i or B

(k)
i , otherwise.

(23)

The resulting ledger becomes

L′ = (B(j)
r ,B′0, ...,B

′
N−1). (24)

In summary, the root chain fork-choice rule overrides the per-shard fork-choice rule as the first

step, and we call the fork-choice rule as root-chain-first fork-choice rule.

A. Simplified Validity Functions

Let us define a list of states for the root chain and shard chains, and the responding state

transfer function as follows:

Si,0 = Ti(∅, Bi,0),∀i ∈ {r, 0, ..., N − 1} (25)

Si,j = Ti(Si,j−1, Bi,j)

= Ti(Ti(Si,j−2, Bi,j−1), Bi,j)

= Ti(Ti(...Ti(Ti(∅, Bi,0), Bi,1)), ..., Bi,j−1), Bi,j), ∀i ∈ {r, 0, ..., N − 1} (26)

where Ti(·, ·) is the state transfer function of root chain or the ith shard chain defined by Vi(·),

Sr,0 and Si,0 are called genesis root state and the ith genesis shard state, respectively. In addition,

we assume that every block has a hash pointer field prev hash(Bi,j) containing the hash value

of the previous block as

h(Bi,j−1) = prev hash(Bi,j),∀j > 1, i ∈ {r, 0, ..., N − 1}. (27)

As a result, following Eq. (8), we could validate a new shard block by applying it to the

previous state identified by the hash pointer of its previous block as

Vi([Bi,0, Bi,1, ..., Bi,j]) = Wi(Bi,j) =


1, if W (Bi,j−1) = 1 and

Bi,j can be applied to Si,j−1

0, otherwise,

,∀i ∈ {0, ..., N − 1}.

(28)



11

and to validate a new root block, we have

Wr(Br,j) =



1, if Wr(Br,j−1) = 1 and

Br,j can be applied to Sr,j−1 and

observedi(Br,j)
oi(Br,j)−oi(Br,j−1)−−−−−−−−−−−→ observedi(Br,j−1), ∀0 ≤ i ≤ N − 1 and

Wi(Bi,k) = 1, ∀0 ≤ i ≤ N − 1, oi(Br,j−1) + 1 ≤ k ≤ oi(Br,j)

0, otherwise.
(29)

B. Double-Spending Attack

There are two types of block that an attacker may revert

• a root block Br,j; or

• a shard block Bi,j, 0 ≤ i ≤ N − 1.

According to the fork-choice rule in Eq. (21), it is straightforward that reverting a root block

in a Boson network could be done by creating an attacking fork of the root chain. Meanwhile,

reverting a shard block Bi,j is less straightforward and depends on whether it is included by

root chain, which is defined as follows.

Definition 3 (Root-Chain-Confirmed Shard Block). Given a Boson network ledger L, the jth

shard block of shard chain i, Bi,j , is root-chain confirmed if and only if j ≤ oi(Br,lr).

Given the definition, we have the following propositions:

Proposition 1. Given a Boson network ledger L, if a shard block Bi,j is not root-chain confirmed,

the attacker could revert a shard chain block Bi,j by creating an attacking fork B′i,j, B
′
i,j+1, ..., B

′
i,l′i

such that

Fi(B
′
i,Bi) > 0 (30)

where B′i = [Bi,0, Bi,1, ..., Bi,j−1, B
′
i,j, B

′
i,j+1, ..., B

′
i,l′i

] and Vi(B′i) = 1.

Proof. By constructing another ledger L′ as

L′ = [Br,B0,B1, ...,Bi−1,B
′
i,Bi+1, ...,BN−1]. (31)

Since Vi(B′i) = 1 and B′i,j, B
′
i,j+1, ..., B

′
i,l′i

are not root-chain confirmed, V (L′) = 1 holds true.

Because both L and L′ have the same root chain, by applying the fork-choice rule in Definition



12

2, local shard fork-choice rule will be applied and the result is Fi(B
′
i,Bi) > 0, which means

that B′i will be chosen, and thus Bi,j will be reverted.

Proposition 2. Given a Boson network ledger L, if a shard block Bi,j is root-chain confirmed,

the attacker could revert a shard chain block Bi,j only if the attacker also reverts all the root

blocks Br,k’s such that

j ≤ oi(Br,k). (32)

Proof. Suppose the proposition is false, which means that there exists a root block Br,m in the

attacking ledger L′, F (L′,L) > 0

L′ = [B′r,B
′
0,B

′
1, ...,B

′
i, ...,B

′
n−1]. (33)

such that

j ≤ oi(Br,m). (34)

As the result, the root chain of the attacking ledger is of the form:

B′r = [Br,0, Br,1, ..., Br,m, ..., B
′
r,l′r

] (35)

Following Eq. (20), this means that B′i must be in the form of

B′i = [Bi,0, Bi,1, ..., Bj, ..., Bi,oi(Br,m), ..., B
′
i,l′i

] (36)

which means Bi,j is not reverted and thus the proposition is true.

Proposition 2 has a very important implication on security: for any shard blocks that are

confirmed by the root chain, the security of double-spending attack will be guarded by the root

chain. If the root chain has strong security guarantee, e.g., the root chain is PoW-based and

has very high hashpower, then all the blocks of the shard chains will share the same security

guarantee. Note that for those shard blocks that are not confirmed by root chain, we could

• Incentivitize the root chain block producers to include new shard blocks as much as possible.

A design is to use “tax” - a portion of coinbase rewards of shard blocks is re-allocated to

the root chain block producers so that the root chain block producers would include new

shard blocks as much as possible to maximize their returns.

• Improve the finality condition of a transaction. The finality of a transaction (and its block)

is subjective - it depends on the recipient, and in a conventional blockchain network such



13

as Bitcoin or Ethereum, the recipient may require the confirmation of several blocks (e.g., 6

block confirmations for Bitcoin) before the recipient believes the transaction is finalized. In

the case of Boson network, a recipient may require the confirmation of several root blocks

rather than shard blocks before the transaction is assumed to be finalized.

C. Adding a Shard Chain Dynamically

Boson consensus allows adding a shard chain BN with consensus CN = (VN(·), FN(·, ·)) at

a specific root block height hN dynamically. First of all, let us define

Bi,−1 = ∅, (37)

which denotes a block that does not exist. Therefore, we define

observedN(Br,j) = BN,−1 = ∅, ∀j < hN (38)

oN(Br,j) = −1,∀j < hN (39)

which means that the root block should not include any shard blocks of shard chain N when

root block height is smaller than hN , and the genesis block of shard chain will be only created

after root block height is greater than hN . The validity function and fork-choice rule are the

same as Definitions 1 and 2, where ∅ ∈ Bn always holds true.

Note that if the current network does not support CN = (VN(·), FN(·, ·)), a network upgraded

(hard fork) may be required. If CN is already supported by the current network, an on-chain

governance protocol (e.g., voting on root chain) can be employed to determine hN and CN

without a network upgrade.

D. Running Different Types of Nodes in Boson Consensus

An advantage of Boson consensus is that, the node operator could run different types of nodes.

Depending on

• the security level a node operator wants to achieve; and/or

• the full ledger or a specific shard or the root chain the node operator may be interested in;

and/or

• the node resources that a node operator has;

, nodes can be classified into the following categories:



14

• Full node. A full node maintains the whole ledger of the network L, and can fully verify

the validity of the ledger and operate on the latest ledger of the network.

• Shard node. A shard node only maintains the ledger of one shard Bi and runs as a light

client of the root chain by only validating the headers of the blocks of the root chain. By

assuming Br valid, the shard node could fully validate the ledger of the shard Bi following

the simplified per-shard validity function in Eq. (28) and operate on the latest shard ledger

based on the fork-choice rule in Definition 2 in the absence of the ledger of the other shards.

• Root node. A root node only maintains the ledger of the root chain Br and runs as the

light client of shard chains. It may maintain the metadata of shard chains such as headers,

and by assuming Bi,∀i ∈ {0, ..., N −1} valid, it could fully validate the ledgers of the root

chain Br and operate on the latest ledger of the root chain.

A node operator is free to run any type of nodes: if the node operator requires significant

security (e.g., miner on the root chain), then the operator could run a full node to make sure

that the operator is working on the latest network ledger and every block produced is valid; or

if the node operator is only interested in one shard and accepts weaker security (e.g., running

a decentralized application just on one shard), then the operator could run a shard node with

much lower resource cost than running a full node.

In addition, if the network capacity is increased by increasing the number of shards, the

resource required by the full node increases, and it may become a significant burden if the full

node is run by a powerful single machine. A way to alleviate the issue is to run multiple nodes

that are trusted with each other and form a cluster, which runs at least one root node and shard

nodes for all shards. Since the nodes within a cluster are trusted, the cluster could fully validate

the whole ledger of the network L as a full node. As a result, by scaling out the full node via

a cluster instead of running a powerful single machine, the burden of running a full node can

be significantly lowered.

E. Cross-Shard Interoperability

In this subsection, we illustrate how multiple shards in a Boson network could interact with

each other by performing cross shard transactions securely and efficiently. First of all, we classify

the transactions into the following categories:

• In-shard transaction - a synchronous transaction that changes the state of a single shard.



15

• Cross-shard transaction - an asynchronous transaction that changes the state of multiple

shards.

The cross-shard transaction will be initiated from a local shard, and the transaction may emit

multiple asynchronous messages to remote shards and change the states of remote shards, where

given the jth block Bi,j of shard chain i, the messages generated by the transactions of the block

are

Mk(Bi,j) = Mi,j,k = [mi,j,k,0,mi,j,k,1, ...,mi,j,k,lMi,j,k
], (40)

where mi,j,k,x is the xth message sent from the jth block of shard chain i to shard chain k, and

a list of messages can be directly applied to the remote shard state as

S′y,z = σ(Sy,z,M). (41)

The examples of a message are

• Deposit some amount of a native token to a recipient in shard k; or

• Call a smart contract in shard chain k; or

• Create a smart contract in shard chain k.

To process the messages in a secure way, we need to ensure the happen-before relation between

the emission of a message of a local shard and the processing of the message of a remote shard.

To achieve that, the target shard contains an additional hash pointer that points to a root block

h(Br,p(Bi,j)) = prev root hash(Bi,j), (42)

where Br,p(Bi,j) = prev root(Bi,j) returns the index of the root block that the shard block

Bi,j points to and it is a non-monotonic decreasing function over j, i.e., p(Bi,j−1) ≤ p(Bi,j).

By including a root block hash pointer with higher index, each shard could maintain a list of

messages ready-to-process from other shards by

Q(Bi,j) = Q′(Bi,j−1) +

p(Bi,j)∑
k=p(Bi,j−1)+1

N−1∑
n=0

oi(Br,k)∑
m=oi(Br,k−1)+1

Mi(Bn,m) (43)

where Q(Bi,j) is the pre-processing list of messages and Q′(Bi,j) is the post-processing list of

messages as

Q′(Bi,j) = Q(Bi,j) \ P (Bi,j) (44)

where P (Bi,j) is the list of messages that are processed in block Bi,j and \ is a set minus

operator.



16

With the aforementioned definitions, we extend the state of a block Bi,j as

S̄i,j = (Si,j, Q
′(Bi,j)) (45)

= T̄ (S̄i,j−1, Bi,j) (46)

= T̄ ((Si,j−1, Q
′(Bi,j−1)), Bi,j) (47)

where

Si,j = T (σ(Si,j−1, P (Bi,j))), Bi,j). (48)

Summarizing all equations, we have

Definition 4 (Boson Consensus Validity Function with Cross-Shard Capability). The validity

function of a ledger generated by Boson consensus with cross-shard capability is:

V̄ (L) =



1, if V̄i(Bi,Pi) = 1, ∀i ∈ {r, 0, ..., N − 1} and

oi(Br,j−1) ≤ oi(Br,j), ∀0 ≤ i ≤ N − 1, j ≥ 1 and

observedi(Br,j) ∈ Bi, ∀0 ≤ i ≤ N − 1, j ≥ 1 and

p(Bi,j−1) ≤ p(Bi,j), ∀0 ≤ i ≤ N − 1, j ≥ 1 and

prev root(Bi,j) ∈ Br, ∀0 ≤ i ≤ N − 1, j ≥ 1 and

p(Bi,oi(Br,j)) < j, ∀0 ≤ i ≤ N − 1, j ≥ 1 and

Q′(Bi,j) = Q(Bi,j) \ P (Bi,j),∀0 ≤ i ≤ N − 1, j ≥ 1,

0, otherwise,

(49)

where Pi = [Pi,0, Pi,1, ..., Pi,li ] with Pi,j = P (Bi,j) and V̄i(·, ·) is the extended version of validity

function of shard i as

V̄i(Bi,Pi) =


1, if V̄i(Bi \ [Bi,li ],Pi \ [Pi,li ]) = 1, and

Bi,li , Pi,li can be applied to Si,li−1 with Si,j = T (σ(Si,j−1, Pi,j))), Bi,j),

0, otherwise,
(50)

The fork-choice rule is still the same as Definition 2.

Given Definition 4, we could derive the simplified version of validity function as follows.



17

Proposition 3. The simplified validity function of a ledger generated by Boson consensus with

cross-shard capability is:

V̄i([Bi,0, Bi,1, ..., Bi,j]) = W̄i(Bi,j)

=



1, if W̄i(Bi,j−1) = 1 and

W̄r(Br,p(Bi,j)) = 1 and

p(Bi,j−1) ≤ p(Bi,j) and

prev root(Bi,j)
p(Bi,j)−p(Bi,j−1)−−−−−−−−−−→ prev root(Bi,j−1) and

Bi,j

j−oi(Br,p(Bi,j)
)

−−−−−−−−−→ observedi(Br,p(Bi,j)) and

Bi,j, Pi,j can be applied to S̄i,j−1,

0, otherwise,

, ∀i ∈ {0, ..., N − 1},

(51)

and

W̄r(Br,j) =



1, if W̄r(Br,j−1) = 1 and

Br,j can be applied to Sr,j−1 and

observedi(Br,j)
oi(Br,j)−oi(Br,j−1)−−−−−−−−−−−→ observedi(Br,j−1),∀i ∈ 0, ..., N − 1 and

W̄i(Bi,k) = 1, ∀0 ≤ i ≤ N − 1, oi(Br,j−1) + 1 ≤ k ≤ oi(Br,j) and

Br,j
j−pi(observedi(Br,j))−−−−−−−−−−−−→ prev root(observedi(Br,j)),

0, otherwise.
(52)

IV. QUARKCHAIN - THE FIRST REALIZATION OF BOSON CONSENSUS

In this section, we present the first realization of Boson Consensus in QuarkChain. QuarkChain

network is currently implemented in Python [8] while the implementation in other computer

languages is also in progress at the time of writing. QuarkChain uses Ethereum’s devp2p as

the P2P protocol, implements the clustering feature, and thus allows running a full node with

a root node and shard nodes trusted in the cluster. As a result, the performance of QuarkChain

network can be easily scaled to thousands or even tens of thousands of TPS with a large number

of shards in the network and sufficient number of machines in a cluster. As reported by the



18

Chain Name Consensus Block Interval Mining Hash Alg. Ledger/Transaction Model

Root Chain PoSW 60s Ethash Account-based/EVM

Shard Chain 0 PoW 10s Ethash Account-Based/EVM

Shard Chain 1 PoSW 10s Ethash Account-Based/EVM

Shard Chain 2 PoSW 10s Ethash Account-Based/EVM

Shard Chain 3 PoSW 10s Ethash Account-Based/EVM

Shard Chain 4 PoSW 10s Ethash Account-Based/EVM

Shard Chain 5 PoSW 10s Ethash Account-Based/EVM

Shard Chain 6 PoSW 10s Qkchash Account-Based/EVM

Shard Chain 7 PoSW 10s Qkchash Account-Based/EVM

TABLE II

CONFIGURATIONS OF THE ROOT CHAIN AND SHARD CHAINS OF QUARKCHAIN MAINNET

community, the peak performance of QuarkChain testnet reaches about more than 55, 000 TPS

with 1, 024 shards [9].

The mainnet of QuarkChain was officially launched on April 31, 2019 with 8 shards [10]. The

root chain and most of shards run proof-of-staked work (PoSW) with enhanced security [11],

and shard chains 6 and 7 uses Qkchash as the mining hash algorithm [12]. Table II summarizes

the major configurations of all chains.

V. CONCLUSION

In this paper, we introduced a general mathematical model for blockchains and used the

single blockchain model with Bitcoin and Ethereum as examples. Then we proposed Boson

consensus algorithm - a blockchain sharding consensus algorithm that scales the network by

running multiple shard chains for better performance and a root chain for better security. We

proved that with root-chain-first fork-choice rule of each shard, all blocks of shard chains can

be efficiently protected by the root chain, and thus the Boson consensus algorithm addresses

the single-shard attack issues. In addition, we discussed different types of nodes running in

the network with different requirements of node resources and security levels. Furthermore, we

illustrated how to add a shard in a Boson network dynamically and how to perform cross-

shard transactions securely and efficiently. Finally, we introduced the first realization of Boson

consensus - QuarkChain and elaborated its configurations.



19

ACKNOWLEDGEMENT

We would like to thank Prof. Xiaoli Ma for reviewing the paper and offering numerous

suggestions.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009.

[2] C. Lee, “Litecoin.” [Online]. Available: https://litecoin.org/

[3] “Bitcoin cash.” [Online]. Available: https://www.bitcoincash.org/

[4] K. Croman, D. Christian, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena, E. Shi, E. G. Sirer et al., “On

scaling decentralized blockchains,” in International Conference on Financial Cryptography and Data Security. Springer,

2016, pp. 106–125.

[5] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing in bitcoin,” in International Conference on Financial

Cryptography and Data Security. Springer, 2015, pp. 507–527.

[6] V. Buterin, “A next-generation smart contract and decentralized application platform,” 2014.

[7] D. Larimer, “Delegated proof-of-stake white paper,” 2014.

[8] “Python implementation of QuarkChain,” https://github.com/QuarkChain/pyquarkchain, 2019, [Online; accessed 13-August-

2019].

[9] “TPS Competition Final Leaderboard,” https://medium.com/quarkchain-official/tps-competition-final-leaderboard-de6a8a8700a8,

2018, [Online; accessed 13-August-2019].

[10] “QuarkChain Mainnet,” https://mainnet.quarkchain.io, 2019, [Online; accessed 13-August-2019].

[11] “Proof of Staked Work - A Simple PoW/PoS Hybrid Consensus,” https://github.com/QuarkChain/pyquarkchain/blob/master/

papers/posw.pdf, 2019, [Online; accessed 13-August-2019].

[12] “Irregular-Program-Based Hash Algorithms,” https://github.com/QuarkChain/pyquarkchain/blob/master/qkchash/qkchash.

pdf, 2019, [Online; accessed 13-August-2019; to be published in IEEE DAPPCON 2019].


